综述与进展

氟取代有机空穴传输材料在钙钛矿太阳能电池中的应用研究进展

  • 刘冬 ,
  • 张晓晔 ,
  • 李战峰
展开
  • 太原理工大学 新型传感器与智能控制教育部重点实验室 太原 030024

收稿日期: 2023-07-10

  修回日期: 2023-10-27

  网络出版日期: 2023-11-15

基金资助

国家自然科学基金(22379105); 山西省自然科学基金(20210302123110)

Progress in the Application of Fluorine-Substituted Organic Hole Transport Materials for Perovskite Solar Cells

  • Dong Liu ,
  • Xiaoye Zhang ,
  • Zhanfeng Li
Expand
  • Key Laboratory of Advanced Transducers and Intelligent Control System, Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024

Received date: 2023-07-10

  Revised date: 2023-10-27

  Online published: 2023-11-15

Supported by

National Natural Science Foundation of China(22379105); Natural Science Foundation of Shanxi Province(20210302123110)

摘要

钙钛矿太阳能电池(PSCs)因其性能优异、成本低廉和制备工艺简单, 在环境、生态和能源结构调整方面具有重要意义. 其中空穴传输材料(HTMs)有效调节电池界面势垒、促进空穴传输和收集、降低电荷复合、优化钙钛矿层与电极界面以及改善钙钛矿光吸收层的性质, 在PSCs中发挥重要的作用. 氟取代材料具有独特的电荷传输特性和光电性能, 向有机分子中引入具有诱导效应和共轭效应的氟原子可以降低分子能级, 提高HTMs的空穴迁移率, 进而提高PSCs的性能. 此综述对氟取代有机空穴传输材料对PSCs光电性能的影响及其作用机制进行了梳理和总结.

本文引用格式

刘冬 , 张晓晔 , 李战峰 . 氟取代有机空穴传输材料在钙钛矿太阳能电池中的应用研究进展[J]. 有机化学, 2024 , 44(4) : 1197 -1209 . DOI: 10.6023/cjoc202307008

Abstract

Perovskite solar cells (PSCs) are of significant importance in the fields of environment, ecology, and energy structure adjustment due to their exceptional performance, cost-effectiveness, and straightforward preparation process. Among them, hole transport materials (HTMs) play a crucial role in PSCs by effectively regulating the battery interface barrier, facilitating hole transport and collection, reducing charge recombination, optimizing the perovskite layer-electrode interface, and enhancing the properties of perovskite light absorption layer. Fluorine-substituted materials possess unique charge transport and photoelectric properties. The introduction of fluorine atoms into organic molecules through induction and conjugation effects can lower molecular energy levels, improve HTM hole mobility thereby enhancing PSCs performance. This paper provides a comprehensive review and summary on the impact of fluorine-substituted organic hole transport materials on the photoelectric properties of PSCs as well as their underlying mechanisms.

参考文献

[1]
Lu L.-Y.; Zheng T.-Y.; Wu Q.-H.; Alexander M.; Schneider; Zhao, D.-L.; Yu, L.-P. Chem. Rev. 2015, 115, 12666.
[2]
Carella A.; Borbone F.; Centore R. Front. Chem. 2018, 6, 1.
[3]
Nazeeruddin M.-K.; Snaith H. Mater. Res. Bull. 2015, 40, 641.
[4]
Wang Y.-B.; Wu T.-H.; Barbaud J.; Kong W.-Y.; Cui D.-Y.; Chen H.; Yang X.-D.; Han L.-Y. Science 2019, 365, 687.
[5]
Zhu H.-G.; Liu Y.-H.; Eickemeyer F.-T.; Pan L.-F.; Ren D.; Ruiz-Preciado M.-A.; Carlsen B.; Yang B.-W.; Dong X.-F.; Wang Z.-W.; Liu H.-L.; Wang S.-R.; Zakeeruddin S.-M.; Hagfeldt A.; Dar M.-I.; Li X.-G.; Gr?tzel M. Adv. Mater. 2020, 32, 1907757.
[6]
Kojima A.; Teshima K.; Shirai Y.; Miyasaka T. J. Am. Chem. Soc. 2009, 131, 6050.
[7]
Min H.; Lee, D-Y.; Kim, J.; Kim, G.; Lee, K.-S.; Kim, J.; Paik, M.-J.; Kim, Y.-K.; Kim, K.-S.; Kim, M.-G.; Shin, T.-J.; Seok, S. Nature 2021, 598, 444.
[8]
Green M.-A.; Hishikawa Y.; Dunlop E.-D.; Yoshita M.; Kopidakis N.; Bothe K.; Hinken D.; Rauer M.; Hao X.-J. Prog. Photovoltaics 2017, 26, 3.
[9]
Yang B.; Suo J.; Di Giacomo F.; Olthof S.; Bogachuk D.; Kim Y.; Sun X.; Wagner L.; Fu F.; Zakeeruddin S.-M.; Hinsch A.; Gratzel M.; Di Carlo A.; Hagfeldt A. ACS Energy Lett. 2021, 6, 3916.
[10]
Al-Ashouri A.; K?hnen E.; Li B.; Magomedov A.; Hempel H.; Caprioglio P.; Márquez J.-A.; Morales Vilches A.-B.; Kasparavicius E.; Smith J.-A. Science 2020, 370, 1300.
[11]
Da Y.; Xuan Y.; Li Q. Sol. Energ. Mat. Sol. C 2018, 174, 206.
[12]
McKenna B.; Evans R.-C. Adv. Mater. 2017, 29, 1606491.
[13]
Jeon N.-J.; Noh J.-H.; Yang W.-S.; Kim Y.-C.; Ryu S.; Seo J.; Seok S.-I. Nature 2015, 517, 476.
[14]
Kim H.-S.; Lee C.-R.; Im J.-H.; Lee K.-B.; Moehl T.; Marchioro A.; Moon S.-J.; Humphry-Baker R.; Yum J.-H.; Moser J. E.; Gr?tzel M.; Park N.-G. Sci. Rep. 2012, 2, 591.
[15]
Bronstein H.; Nielsen C.-B.; Schroeder B.-C.; McCulloch I. Nat. Rev. Chem. 2020, 4, 66.
[16]
Laeter J.-R.-D.; B?hlke J.-K.; Bièvre P.-E.; Hidaka H.; Peiser H.-S.; Rosman K.-J.-R.; Taylor P.-D.-P. Pure Appl. Chem. 2003, 75, 683.
[17]
Yao H.-F.; Wang J.-W.; Xu Y.; Zhang S.-Q.; Hou J.-H. Acc. Chem. Res. 2020, 53, 822.
[18]
Zhang Q.-Q.; Kelly M.-A.; Bauer N.; You W. Acc. Chem. Res. 2017, 50, 2401.
[19]
Li Z.-F., Tong Y.-H.; Ren J.-K.; Sun Q.-J.; Tian Y.; Cui Y.-X.; Wang H.; Hao Y.-Y. Chem. Eng. 2020, 402, 125923.
[20]
Ren J.-K.; Qu J.-S.; Chen J.-B.; Li Z.-F.; Cui Y.-X.; Wang H.; Yu Z.; Hao Y.-Y. J. Power Sources 2018, 401, 29.
[21]
Guo S.-S.; Zhang X.-Y.; Li Z.-F.; Chen Y.-M.; Wang H.; Hao Y.-Y. Sol. RRL 2021, 5, 2100506.
[22]
Li X.-Q.; Sun N.; Li Z.-F.; Chen J.-B.; Sun Q.-J.; Wang H.; Hao Y.-Y. New J. Chem. 2021, 45, 735.
[23]
Li Z.-F.; Chen J.-B.; Ren J.-K.; Sun Q.-J.; Wang H.; Yu J.-S.; Hao Y.-Y. Org. Electron. 2018, 62, 366.
[24]
Chen J.; Ren J.; Li Z.-F.; Wang H.; Hao Y.-Y. Org. Electron. 2018, 56, 59.
[25]
Chen Z.-L.; Li H.; Zheng X.-L.; Zhang Q.; Li Z.-F.; Hao Y.-Y.; Fang G.-J. ChemSusChem 2017, 10, 3111.
[26]
Li Z.-F.; Chen J.-B.; Li H.; Zhang Q.; Chen Z.-L.; Zheng X.-L.; Fang G.-J.; Wang H.; Hao Y.-Y. RSC Adv. 2017, 7, 41903.
[27]
Wan L.; Zhang W.; Fu S.; Chen L.-J.; Wang Y.-M.; Xue Z.-Y.; Tao Y.-T.; Zhang W.-J.; Song W.-J.; Fang J.-F. J. Mater. Chem. A 2020, 8, 6517.
[28]
Xiang W.-C.; Pan J.-Y.; Chen Q. ACS Appl. Energy Mater. 2020, 3, 5977.
[29]
Ali J.; Gao P.; Zhou G.-Q.; Li Y.; Hao T.-Y.; Song J.-N.; Xu J.-Q.; Qian K.; Zhang Q.-Z.; Zhu L.; Zhang M.; Wang J.; Feng W.; Hu H. L.; Liu F. Adv. Electron. Mater. 2020, 6, 2000149.
[30]
Tan S.; Huang T.-Y.; Yavuz I.; Wang R.; Yoon T.-W.; Xu M.-J.; Xing Q.-Y.; Park K.; Lee D.-K.; Chen, C-H.; Zheng, R.; Yoon, T.; Zhao, Y.-P.; Wang, H.-C.; Meng, D.; Xue, J.-J.; Song, Y.-J.; Pan, X.-Q.; Park, N.-G.; Lee, J.-W. Nature 2022, 605, 268.
[31]
Yang X.; Wang H.; Cai B.; Yu Z.; Sun L. Energy Chem. 2018, 27, 650.
[32]
Javier U.-M.; Ines G.-B.; Agustín M.-O.; Nazario M. Chem. Soc. Rev. 2018, 47, 8541.
[33]
Spalla M.; Perrin L.; Planes E.; Matheron M.; Berson S.; Flandin L. ACS Appl. Energy Mater. 2020, 3, 3282.
[34]
Bakr Z.-H.; Wali Q.; Fakharuddin A.; Schmidt-Mendec L.; Browne T.-M.; Josea R. Nano Energy 2017, 34, 271.
[35]
Wang F.-F.; Cao Y.-Z.; Chen C.; Chen Q.; Wu X.; Li X.-G.; Qin T.-S.; Huang W. Adv. Funct. Mater. 2018, 28, 1803753.
[36]
Grisorio R.; Iacobellis R.; Listorti A.; Marco L.-D.; Cipolla M.-P.; Manca M.; Rizzo A.; Abate A.; Gigli G.; Suranna G.-P. ACS Appl. Mater. Inter. 2017, 9, 24778.
[37]
Niu X.-X.; Li N.-X.; Zhu C.; Liu L.; Zhao Y.-Z.; Ge Y.; Chen Y.-H.; Xu Z.-Q.; Lu Y.; Sui M.-L.; Chen Q.; Li Y.-J.; Tarasov A.; Goodilin E.-A.; Zhou H.-P.; Chen Q. Mater. Chem. A 2019, 7, 7338.
[38]
Zhou X.-S.; Qiu L.-L.; Fan R.-Q.; Wang A.-N.; Ye H.-X.; Tian C.-H.; Hao S.; Yang Y.-L. Sol. RRL 2020, 4, 1900380.
[39]
Du Q.; Shen Z.-T.; Chen C.; Li F.-M.; Jin M.-Q.; Li H.-L.; Dong C.; Zheng J.-H.; Ji M.-X.; Wang M.-T. Sol. RRL 2021, 5, 2100622.
[40]
Cao W.; Zhang J.; Lin K.; Qiu L.; Li J.; Dong Y.; Xia D.; Yang Y. Nano Energy 2022, 104, 107924.
[41]
Yang W.-S.; Noh J.-H.; Jeon N.-J.; Kim Y.-C.; Ryu S.; Seo J. Science 2015, 348, 1234.
[42]
Jung E.-H.; Jeon N.-J.; Park E.-Y.; Moon C.-S.; Shin T.-J.; Yang T.-Y.; Noh J.-H.; Seo J. Nature 2019, 567, 511.
[43]
Hu W.; Xu C.-Y.; Niu L.-B.; Elseman A.-M.; Wang G.; Yan D.; Yao Y.-Q.; Liao L.; Zhou G.-D.; Song Q.-L. ACS Appl. Mater. Inter. 2019, 11, 22021.
[44]
Redondo-Obispo C.; Ripolles T.-S.; Cortijo-Campos S.; Alvarez A.-L.; Climent-Pascual E.; de Andres A.; Coya C. Mater. Des. 2020, 191, 108237.
[45]
Wang Z.-J.; Li J.-W.; Zhang D.-Y.; Yang G.-J.; Yu J.-S. Chin. Phys. B 2022, 31, 087802.
[46]
Jung J.-W.; Chueh C.-C.; Jen A.-K.-Y. Adv. Mater. 2015, 27, 7874.
[47]
Ma S.; Zhang H.; Zhao N.; Cheng Y.-B.; Wang M.-K.; Shen Y.; Tu G.-L. J. Mater. Chem. A 2015, 3, 12139.
[48]
Sandoval-Torrientes R.; Zimmermann I.; Calbo J.; Aragó J.; Santos J.; Martín N.; Nazeeruddin M.-K. J. Mater. Chem. A 2018, 6, 5944.
[49]
Urieta-Mora J.; Garcia-Benito I.; Molina-Ontoria A.; Martin N. Chem. Soc. Rev. 2018, 47, 8541.
[50]
Yang X.; Wang H.-X.; Cai B.; Yu Z.; Sun L.-C. J. Energy Chem. 2018, 27, 650.
[51]
Jeong M.; Choi I.-W.; Go E.-M.; Cho Y.-J.; Kim M.; Lee B.; Jeong S.; Jo Y.; Choi H.-W.; Lee J.-H.; Kwak S.-K.; Kim D.-S.; Yang C. Science 2020, 369, 1615.
[52]
Heo J.-H.; Park S.; Im S.-H.; Son H.-J. ACS Appl. Mater. Inter. 2017, 9, 39511.
[53]
Hwang H.; Park S.; Heo J.-H.; Kim W.; Ahn H.; Kim T.-S.; Im S.-H.; Son H.-J. J. Power Sources 2019, 418, 167.
[54]
Bae Y.; Li L.; Yang K.; Mosurkal R.; Kumar K. ACS Appl. Energy Mater. 2021, 4, 10459.
[55]
Sun Y.; Peng Y.; Zhao C.; Zhang J.; Ghadari R.; Hu L.-H.; Kong F.-T. Dyes Pigments 2022, 197, 109889.
[56]
Ghaderian A.; Pegu M.; Hemasiri N.-H.; Huang P.; Ahmad S.; Kazim S. J. Mater. Chem. 2022, 10, 476.
[57]
Li Z.-N.; Yun Y.-K.; Huang H.-Y.; Ding Z.-C.; Li X.-W.; Zhao B.-M.; Huang W. J. Energy Chem. 2021, 57, 341.
[58]
Wu F.; Ji Y.; Zhong C.; Liu Y.; Tan L.-X.; Zhu L.-N. Chem. Commum. 2017, 53, 8719.
[59]
Tian Y.; Tao L.; Chen C.; Lu H.-F.; Li H.-P.; Yang X.-C.; Cheng M. Dyes Pigm. 2021, 184, 108786.
[60]
Benhattab S.; Cho A.-N.; Nakar R.; Berton N.; Tran-Van F.; Park N.-G.; Schmaltz B. Org. Electron. 2018, 56, 27.
[61]
Tao L.; Chen C.; Wu C.; Ding X.-D.; Zheng M.-M.; Li H.-P.; Li G.-Q.; Lu G.-Q.; Lu H.-F.; Cheng M. Sol. RRL 2020, 4, 1900362.
[62]
Zhou X.; Kong F.-T.; Sun Y.; Huang Y.; Zhang X.-X.; Ghadari R. Dyes Pigm. 2020, 173, 107954.
[63]
Yang Y.; Un Ryu S.; Wu F.; Lu H.-Q.; Jia K.-K.; Zhong C.; Park T.; Zhu L.-N. Chem. Eng. J. 2021, 424, 130396.
[64]
Igci C.; Kanda H.; Yoo S.-M.; Sutanto A.-A.; Syzgantseva O.-A.; Syzgantseva M.-A.; Jankauskas V.; Rakstys K.; Mensi M.; Kim H.; Asiri A.-M.; Nazeeruddin M.-K. Sol. RRL 2021, 6, 2100667.
[65]
Cho I.; Jeon N.-J.; Kwon O.-K.; Kim D.-W.; Jung E.-H.; Noh J.-H.; Seo J.; Seok S.; Park S.-Y. Chem. Sci. 2017, 8, 734.
[66]
Liu T.; Chen K.; Hu Q.; Zhu R.; Gong Q.-H. Adv. Energy Mater. 2016, 6, 1600457.
[67]
Shang R.; Zhou Z.; Nishioka H.; Halim H.; Furukawa S.; Takei I.; Ninomiya N.; Nakamura E. J. Am. Chem. Soc. 2018, 140, 5018.
[68]
Duan L.-S.; Wu Q.-P.; Xu Y.-Y.; Wang H.; Sun Z.; Chen Y.; Xue S. Chin. J. Chem. Phys. 2021, 34, 217.
[69]
Wu J.-H.; Hu M.-M.; Zhang L.-Z.; Song G.-J.; Li Y.; Tan W.-C.; Tian Y.-Q.; Xu B.-M. Chem. Eng. J. 2021, 422, 130124.
[70]
Liu K.; Dai S.-X.; Meng F.; Shi J.-J.; Li Y.-S.; Wu J.-H.; Meng Q.-B.; Zhan X.-W. J. Mater. Chem. A 2017, 5, 21414.
[71]
Wang Y.-K.; Ma H.; Chen Q.-Y.; Sun Q.; Liu Z.-X.; Sun Z.; Jia Z.-G.; Zhu Y.-Y.; Zhang S.; Zhang J.; Yuan N.; Ding J.-N.; Zhou Y.; Song B.; Li Y.-F. ACS Appl. Mater. Inter. 2021, 13, 7705.
[72]
Labban A.-E.; Chen H.; Kirkus M.; Barbe J.; Gobbo S.; Neophytou M.; McCulloch I.; Eid J. Adv. Energy Mater. 2016, 6, 1502101.
[73]
Zhang F.-G.; Yao Z.-Y.; Guo Y.-X.; Li Y.-Y.; Bergstrand J.; Brett C.-J.; Cai B.; Hajian A.; Guo Y.; Yang X.-C.; Widengren J.; Roth S.-V.; Kloo L.; Sun L.-C. J. Am. Chem. Soc. 2019, 141, 19700.
[74]
Reichenbacher K.; Suss H.-I.; Hulliger J. Chem. Soc. Rev. 2005, 34, 22.
[75]
Liu X.-H.; Fu S.; Zhang W.-X.; Xu Z.-H.; Li X.-D.; Fang J.-F.; Zhu Y.-J. ACS Appl. Mater. Inter. 2021, 13, 52549.
[76]
Kranthiraja K.; Park S.-H.; Kim H.; Gunasekar K.; Han G.; Kim B.-J.; Kim C.-S.; Kim S.; Lee H.; Nishikubo R.; Saeki A.; Jin S.; Song M. ACS Appl. Mater. Inter. 2017, 9, 36053.
[77]
Rana P.-J.-S.; Gunasekaran R.-K.; Park S.-H.; Tamilavan V.; Karuppanan S.; Kim H.-J.; Prabakar K. J. Phys. Chem. C 2019, 123, 8560.
[78]
Yao Z.-Y.; Zhang F.-G.; He L.-L.; Bi X.-Q.; Guo Y.-X.; Guo Y.; Wang L.-Q.; Wan X.-J.; Chen Y.-S.; Sun L.-C. Angew. Chem., Int. Ed. 2022, 61, e202201847.
[79]
Kranthiraja K.; Gunasekar K.; Kim H.; Cho A.-N.; Park N.-G.; Kim S.; Kim B.-J.; Nishikubo R.; Saeki A.; Song M.; Jin S. Adv. Mater. 2017, 29, 1700183.
[80]
Kong X.-Y.; Jiang Y.; Wu X.-Y.; Chen C.; Guo J.-L.; Liu S.-J.; Gao X.-S.; Zhou G.-F.; Liu J.-M.; Kempa K.; Gao J.-W. J. Mater. Chem. A 2020, 8, 1858.
[81]
Kim Y.-W.; Jung E.-H.; Kim G.; Kim D.; Kim B.-J.; Seo J. Adv. Energy Mater. 2018, 8, 1801668.
[82]
Koh C.-W.; Heo J.-H.; Uddin M.-A.; Kwon Y.-W.; Choi D.-H.; Im S.-H.; Woo H.-Y. ACS Appl. Mater. Inter. 2017, 9, 43846.
[83]
Jeong I.; Jo J.-W.; Bae S.; Son H.-J; Ko M.-J. Dyes Pigm. 2019, 164, 1.
[84]
Lian X.-M.; Chen J.-H.; Fu R.-L.; Lau T.-K.; Zhang Y.-Z.; Wu G.; Lu X.-H.; Fang Y.-J.; Yang D.; Chen H.-Z. J. Mater. Chem. A 2018, 6, 24633.
[85]
Luo M.; Zong X.-P.; Zhao M.; Sun Z.; Chen Y.; Liang M.; Wu Y.-Z.; Xue S. Chem. Eng. J. 2022, 442, 136136.
[86]
Astridge D.-D.; Hoffman J.-B.; Zhang F.; Park S.-Y.; Zhu K.; Sellinger A. ACS Appl. Polym. Mater. 2021, 3, 5578.
文章导航

/