研究论文

基于聚集诱导效应(AIE)-激发态分子内质子转移(ESIPT)效应的四苯乙烯荧光探针对Zn(II)检测研究

  • 张继东 ,
  • 杨垚 ,
  • 张杰 ,
  • 厍伟
展开
  • a 安康学院化学化工学院 陕西省富硒食品质量监督检验中心 陕西安康 725000
    b 中国富硒产业研究院 农业农村部富硒产品开发与质量控制重点实验室 陕西安康 725000

收稿日期: 2023-07-21

  修回日期: 2023-10-15

  网络出版日期: 2023-11-15

基金资助

陕西省技术创新引导专项基金(2022QFY09-09); 陕西省重点研发计划(2023YBGY-152); 陕西省教育厅专项科研计划项目(23JK0274); 安康学院科研项目重点项目(2021AYZD03); 国家级大学生创新创业训练计划(202211397014); 陕西省大学生创新创业训练计划(S202211397031)

Detection of Zn(II) by Tetraphenylethyene Fluorescent Probe Based on Aggregation-Induced Emission (AIE)-Excited State Intramolecular Proton Transfer (ESIPT) Effect

  • Jidong Zhang ,
  • Yao Yang ,
  • Jie Zhang ,
  • Wei She
Expand
  • a Quality Supervision and Inspection Centre of Se-Enriched Food of Shaanxi Province, School of Chemistry & Chemical Engineering, Ankang University, Ankang, Shaanxi 725000
    b Key Laboratory of Se-Enriched Products Development and Quality Control of Ministry of Agriculture, Se-Enriched Products Research Institute of China, Ankang, Shaanxi 725000

Received date: 2023-07-21

  Revised date: 2023-10-15

  Online published: 2023-11-15

Supported by

Shaanxi Provincial Technology Innovation Guidance Special Fund(2022QFY09-09); Shaanxi Provincial Key Research Program(2023YBGY-152); Shaanxi Provincial Education Department Special Scientific Research Project(23JK0274); Key Natural Science Research Project of Ankang University(2021AYZD03); National Undergraduate Training Program for Innovation and Entrepreneurship(202211397014); Shaanxi Provincial Innovation Experiment Program for University Students(S202211397031)

摘要

设计合成了一种以四苯乙烯为荧光基团、邻香草醛为识别基团的聚集诱导效应(AIE) Zn2+荧光探针. 探针的结构通过1H NMR、质谱及X射线单晶衍射进行了表征. 荧光光谱研究发现, 探针对Zn2+表现出良好的选择性和灵敏性, 荧光强度随着Zn2+的浓度增大而逐渐增强. 通过Job plot和单晶结构表征发现, 探针与Zn2+是2∶1的结合模式, 检测限为56.2 nmol•L–1. 检测机理归因于激发态分子内质子转移(ESIPT)和AIE效应. 该新型AIE探针可作为分析测定Zn2+的一种便捷工具.

本文引用格式

张继东 , 杨垚 , 张杰 , 厍伟 . 基于聚集诱导效应(AIE)-激发态分子内质子转移(ESIPT)效应的四苯乙烯荧光探针对Zn(II)检测研究[J]. 有机化学, 2024 , 44(4) : 1337 -1342 . DOI: 10.6023/cjoc202307021

Abstract

A aggregation induced effect (AIE) Zn2+ fluorescence probe with tetrastyrene as the fluorescent group and orthovanillin as the recognition group was designed and synthesized. The structure of the probe was characterized by 1H NMR, MS and single-crystal X ray diffraction. The fluorescence spectra showed that the probe has good selectivity and sensitivity to Zn2+, and its fluorescence enhances with the increase of concentration of Zn2+. Through job plot and single crystal structure characterization, it was found that the probe has a 2∶1 binding mode with Zn2+, and the detection limit is 56.2 nmol•L–1. The detection mechanism was attributed to the excited state intramolecular proton transfer (ESIPT) and AIE effect. The new AIE probe can be used as a convenient tool for the analysis and determination of Zn2+.

参考文献

[1]
Kumar V.; Kumar A.; Singh K.; Avasthi K.; Kim J. J. Eur. J. Nutr. 2021, 60, 55.
[2]
Choi S.; Cui C.; Luo Y.; Kim S. H.; Ko J. K.; Huo X.; Ma J.; Fu L.; Souza R. F.; Korichneva I.; Pan Z. FASEB J. 2018, 32, 404.
[3]
Shefner J. M.; Reaume A. G.; Flood D. G.; Scott R. W.; Kowall N. W.; Ferrante R. J.; Brown R. H. Neurology 1999, 53, 1239.
[4]
Wintergerst E. S.; Maggini S.; Hornig D. H. Ann. Nutr. Metab. 2006, 50, 85.
[5]
Wong C. P.; Ho E. Mol. Nutr. Food Res. 2012, 56, 77.
[6]
Maares M.; Haase H. Arch. Biochem. Biophys. 2016, 611, 58.
[7]
Zhang J.; Yan Z.; Wang S.; She M.; Zhang Z.; Cai W.; Li J. Dyes Pigm. 2018, 150, 112.
[8]
Yang Y.; Cao B.; Zhang Y.; Dong Y. Chin. J. Org. Chem, 2017, 37, 3024. (in Chinese)
[8]
(杨云裳, 曹碧霞, 张应鹏, 董玉莹, 有机化学, 2017, 37, 3024.)
[9]
Fang L.; Trigiante G.; Crespo-Otero R.; Hawes C. S.; Philpott M. P.; Jones C. R.; Watkinson M. Chem. Sci. 2019, 10, 10881.
[10]
Luo J.; Xie Z.; Lam J. W.; Cheng L.; Chen H.; Qiu C.; Tang B. Z. Chem. Commun. 2001, 18, 1740.
[11]
Gao M.; Tang B. Z. ACS Sens. 2017, 2, 1382.
[12]
Ye F. Y.; Hu M.; Zheng Y. S. Coord. Chem. Rev. 2023, 493, 215.
[13]
Kang Z.; Yang J.; Jiang J.; Zhao L.; Zhang Y.; Tu Q.; Wang J.; Yuan M. S. Sens. Actuators, B 2022, 370, 132436.
[14]
La D. D.; Bhosale S. V.; Jones L. A.; Bhosale S. V. ACS Appl. Mater. Interfaces 2017, 10, 12189.
[15]
Feng H. T.; Yuan Y. X.; Xiong J. B.; Zheng Y. S.; Tang B. Z. Chem. Soc. Rev. 2018, 47, 7452.
[16]
Kumar K. S. S.; Girish Y. R.; Ashrafizadeh M.; Mirzaei S.; Rakesh K. P.; Gholami M. H.; Zabolian A.; Hushmandi K.; Orive, Gorka.; Kadumudi, F. B.; Dolatshahi-Pirouz, A.; Thakur, V. K.; Zarrabi, A.; Makvandi, P.; Rangappa, K. S. Coord. Chem. Rev. 2021, 447, 214135.
[17]
Guo Z.; Li G.; Wang H.; Zhao J.; Liu Y.; Tan H.; Li X.; Stang P. J.; Yan X. J. Am. Chem. Soc, 2021, 143, 9215.
[18]
Mu C.; Zhang Z.; Hou Y.; Liu H.; Ma L.; Li X.; Ling S.; He G.; Zhang M. Angew. Chem. 2021, 133, 12401.
[19]
Zhang D.; Yu W.; Li S.; Xia Y.; Li X.; Li Y.; Yi T. J. Am. Chem. Soc. 2021, 143, 1313.
[20]
Li Y.; Dong Y.; Cheng L.; Qin C.; Nian H.; Zhang H.; Yu Y.; Cao L. J. Am. Chem. Soc. 2019, 141, 8412.
[21]
Wang P.; Miao X.; Meng Y.; Wang Q.; Wang J.; Duan H.; Li Y.; Li C.; Liu J.; Cao L. ACS Appl. Mater. Interfaces 2020, 12, 22630.
[22]
Ahmed S.; Kumar A.; Mukherjee P. S. Chem. Mater. 2022, 34, 9656.
[23]
Wang D.; Li S. J.; Cao W.; Wang Z.; Ma Y. ACS Omega 2022, 7, 18017.
[24]
Tang A.; Yin Y.; Chen Z.; Fan C.; Liu G.; Pu S. Tetrahedron 2019, 75, 130489.
[25]
Wang Y.; Liu H.; Chen Z.; Pu S. Spectrochim. Acta, Part A 2021, 245, 118928.
[26]
Zhang J.; Yan W.; Hu W.; Guo D.; Zhang D.; Quan X.; Bu X. Chen S. Chin. J. Org. Chem. 2023, 43, 326. (in Chinese)
[26]
(张继东, 颜婉琳, 胡文强, 郭典, 张大龙, 权校昕, 卜贤盼, 陈思宇, 有机化学, 2023, 43, 326.)
[27]
Sun H.; Jiang Y.; Nie J.; Wei J.; Miao B.; Zhao Y.; Zhang L.; Ni Z. Mater. Chem. Front. 2021, 5, 347.
[28]
Wang L.; Li Y.; You X.; Xu K.; Feng Q.; Wang J.; Hou H.; Liu Y.; Li K. J. Mater. Chem. C 2017, 5, 65.
文章导航

/