基于聚集诱导效应(AIE)-激发态分子内质子转移(ESIPT)效应的四苯乙烯荧光探针对Zn(II)检测研究
收稿日期: 2023-07-21
修回日期: 2023-10-15
网络出版日期: 2023-11-15
基金资助
陕西省技术创新引导专项基金(2022QFY09-09); 陕西省重点研发计划(2023YBGY-152); 陕西省教育厅专项科研计划项目(23JK0274); 安康学院科研项目重点项目(2021AYZD03); 国家级大学生创新创业训练计划(202211397014); 陕西省大学生创新创业训练计划(S202211397031)
Detection of Zn(II) by Tetraphenylethyene Fluorescent Probe Based on Aggregation-Induced Emission (AIE)-Excited State Intramolecular Proton Transfer (ESIPT) Effect
Received date: 2023-07-21
Revised date: 2023-10-15
Online published: 2023-11-15
Supported by
Shaanxi Provincial Technology Innovation Guidance Special Fund(2022QFY09-09); Shaanxi Provincial Key Research Program(2023YBGY-152); Shaanxi Provincial Education Department Special Scientific Research Project(23JK0274); Key Natural Science Research Project of Ankang University(2021AYZD03); National Undergraduate Training Program for Innovation and Entrepreneurship(202211397014); Shaanxi Provincial Innovation Experiment Program for University Students(S202211397031)
张继东 , 杨垚 , 张杰 , 厍伟 . 基于聚集诱导效应(AIE)-激发态分子内质子转移(ESIPT)效应的四苯乙烯荧光探针对Zn(II)检测研究[J]. 有机化学, 2024 , 44(4) : 1337 -1342 . DOI: 10.6023/cjoc202307021
A aggregation induced effect (AIE) Zn2+ fluorescence probe with tetrastyrene as the fluorescent group and orthovanillin as the recognition group was designed and synthesized. The structure of the probe was characterized by 1H NMR, MS and single-crystal X ray diffraction. The fluorescence spectra showed that the probe has good selectivity and sensitivity to Zn2+, and its fluorescence enhances with the increase of concentration of Zn2+. Through job plot and single crystal structure characterization, it was found that the probe has a 2∶1 binding mode with Zn2+, and the detection limit is 56.2 nmol•L–1. The detection mechanism was attributed to the excited state intramolecular proton transfer (ESIPT) and AIE effect. The new AIE probe can be used as a convenient tool for the analysis and determination of Zn2+.
| [1] | Kumar V.; Kumar A.; Singh K.; Avasthi K.; Kim J. J. Eur. J. Nutr. 2021, 60, 55. |
| [2] | Choi S.; Cui C.; Luo Y.; Kim S. H.; Ko J. K.; Huo X.; Ma J.; Fu L.; Souza R. F.; Korichneva I.; Pan Z. FASEB J. 2018, 32, 404. |
| [3] | Shefner J. M.; Reaume A. G.; Flood D. G.; Scott R. W.; Kowall N. W.; Ferrante R. J.; Brown R. H. Neurology 1999, 53, 1239. |
| [4] | Wintergerst E. S.; Maggini S.; Hornig D. H. Ann. Nutr. Metab. 2006, 50, 85. |
| [5] | Wong C. P.; Ho E. Mol. Nutr. Food Res. 2012, 56, 77. |
| [6] | Maares M.; Haase H. Arch. Biochem. Biophys. 2016, 611, 58. |
| [7] | Zhang J.; Yan Z.; Wang S.; She M.; Zhang Z.; Cai W.; Li J. Dyes Pigm. 2018, 150, 112. |
| [8] | Yang Y.; Cao B.; Zhang Y.; Dong Y. Chin. J. Org. Chem, 2017, 37, 3024. (in Chinese) |
| [8] | (杨云裳, 曹碧霞, 张应鹏, 董玉莹, 有机化学, 2017, 37, 3024.) |
| [9] | Fang L.; Trigiante G.; Crespo-Otero R.; Hawes C. S.; Philpott M. P.; Jones C. R.; Watkinson M. Chem. Sci. 2019, 10, 10881. |
| [10] | Luo J.; Xie Z.; Lam J. W.; Cheng L.; Chen H.; Qiu C.; Tang B. Z. Chem. Commun. 2001, 18, 1740. |
| [11] | Gao M.; Tang B. Z. ACS Sens. 2017, 2, 1382. |
| [12] | Ye F. Y.; Hu M.; Zheng Y. S. Coord. Chem. Rev. 2023, 493, 215. |
| [13] | Kang Z.; Yang J.; Jiang J.; Zhao L.; Zhang Y.; Tu Q.; Wang J.; Yuan M. S. Sens. Actuators, B 2022, 370, 132436. |
| [14] | La D. D.; Bhosale S. V.; Jones L. A.; Bhosale S. V. ACS Appl. Mater. Interfaces 2017, 10, 12189. |
| [15] | Feng H. T.; Yuan Y. X.; Xiong J. B.; Zheng Y. S.; Tang B. Z. Chem. Soc. Rev. 2018, 47, 7452. |
| [16] | Kumar K. S. S.; Girish Y. R.; Ashrafizadeh M.; Mirzaei S.; Rakesh K. P.; Gholami M. H.; Zabolian A.; Hushmandi K.; Orive, Gorka.; Kadumudi, F. B.; Dolatshahi-Pirouz, A.; Thakur, V. K.; Zarrabi, A.; Makvandi, P.; Rangappa, K. S. Coord. Chem. Rev. 2021, 447, 214135. |
| [17] | Guo Z.; Li G.; Wang H.; Zhao J.; Liu Y.; Tan H.; Li X.; Stang P. J.; Yan X. J. Am. Chem. Soc, 2021, 143, 9215. |
| [18] | Mu C.; Zhang Z.; Hou Y.; Liu H.; Ma L.; Li X.; Ling S.; He G.; Zhang M. Angew. Chem. 2021, 133, 12401. |
| [19] | Zhang D.; Yu W.; Li S.; Xia Y.; Li X.; Li Y.; Yi T. J. Am. Chem. Soc. 2021, 143, 1313. |
| [20] | Li Y.; Dong Y.; Cheng L.; Qin C.; Nian H.; Zhang H.; Yu Y.; Cao L. J. Am. Chem. Soc. 2019, 141, 8412. |
| [21] | Wang P.; Miao X.; Meng Y.; Wang Q.; Wang J.; Duan H.; Li Y.; Li C.; Liu J.; Cao L. ACS Appl. Mater. Interfaces 2020, 12, 22630. |
| [22] | Ahmed S.; Kumar A.; Mukherjee P. S. Chem. Mater. 2022, 34, 9656. |
| [23] | Wang D.; Li S. J.; Cao W.; Wang Z.; Ma Y. ACS Omega 2022, 7, 18017. |
| [24] | Tang A.; Yin Y.; Chen Z.; Fan C.; Liu G.; Pu S. Tetrahedron 2019, 75, 130489. |
| [25] | Wang Y.; Liu H.; Chen Z.; Pu S. Spectrochim. Acta, Part A 2021, 245, 118928. |
| [26] | Zhang J.; Yan W.; Hu W.; Guo D.; Zhang D.; Quan X.; Bu X. Chen S. Chin. J. Org. Chem. 2023, 43, 326. (in Chinese) |
| [26] | (张继东, 颜婉琳, 胡文强, 郭典, 张大龙, 权校昕, 卜贤盼, 陈思宇, 有机化学, 2023, 43, 326.) |
| [27] | Sun H.; Jiang Y.; Nie J.; Wei J.; Miao B.; Zhao Y.; Zhang L.; Ni Z. Mater. Chem. Front. 2021, 5, 347. |
| [28] | Wang L.; Li Y.; You X.; Xu K.; Feng Q.; Wang J.; Hou H.; Liu Y.; Li K. J. Mater. Chem. C 2017, 5, 65. |
/
| 〈 |
|
〉 |