基于单电子转移的黄素仿生光催化氧化研究进展
收稿日期: 2023-08-27
修回日期: 2023-11-03
网络出版日期: 2023-11-15
基金资助
国家自然科学基金(21802084); 国家自然科学基金(51805295); 国家自然科学基金(51905304); 山东省自然科学基金(ZR2019BB021); 山东省青创团队(2022KJ181); 泰山学者资助项目
Advances in Flavin-Inspired Photocatalytic Oxidations Involving Single Electron Transfer Process
Received date: 2023-08-27
Revised date: 2023-11-03
Online published: 2023-11-15
Supported by
National Natural Science Foundation of China(21802084); National Natural Science Foundation of China(51805295); National Natural Science Foundation of China(51905304); Natural Science Foundation of Shandong Province(ZR2019BB021); Shandong Youth Innovation Program for Colleges and Universities(2022KJ181); Funding of Taishan Scholars
自然界的黄素辅酶具有结构简单、无毒、能吸收和利用可见光等特点, 常常作为电子载体参与生物体内的氧化还原反应. 受黄素催化氧化功能的启发, 过去二十年里, 黄素衍生物催化以氧气或双氧水为终端氧化剂的两电子氧化反应得到了长足发展; 而近年来, 由于黄素衍生物丰富易调控的光化学性质, 更多的注意力开始转向它们所促进的单电子转移反应, 相应的有机合成方法学也正在涌现. 综述了截止到2023年7月的可见光驱动黄素衍生物催化诸如芳香环、含氮、含氧及含硫等官能团的单电子氧化, 生成相应的阳离子自由基中间体再参与后续过程来实现多样化有机转化的相关进展. 同时, 对底物范围和单电子转移机理进行了讨论, 并对该领域的未来发展进行了展望.
沈都益 , 李玲慧 , 靳鸽 , 梁雨佳 , 张欣慧 , 公培伟 , 张范军 , 晁绵冉 . 基于单电子转移的黄素仿生光催化氧化研究进展[J]. 有机化学, 2024 , 44(4) : 1069 -1093 . DOI: 10.6023/cjoc202308024
Natural flavin coenzymes, featuring simple structure, non-toxicity, and the ability of absorbing and utilizing visible light, frequently act as electron carriers in biological redox reactions. Inspired by the biological function of flavins, great progress has been made in the two-electron oxidation reactions catalyzed by flavins with molecular oxygen or hydrogen peroxide as the terminal oxidant over the past two decades. Due to the versatile and tunable photochemical properties of artificial flavins, in recent years, more and more interests have been drawn to the photoinduced single electron transfer reactions with biomimetic flavins, promoting the rapid developments in the corresponding organic synthetic methodologies. Herein, the advances until July 2023 in bioinspired flavins-catalyzed one-electron oxidation of organic substrates bearing aromatic rings, nitrogen-, oxygen-, and sulfur-based groups under visible-light irradiation, delivering the corresponding radical cations which subsequently take part in the following reactions and enabling various of chemical transformations, are summarized. In addition, selected substrate scopes and possible reaction mechanisms involving single electron transfer process are discussed. Meanwhile, future challenges and opportunities of flavin photocatalysis are also prospected.
| [1] | (a) Holmberg-Douglas N.; Nicewicz D. A. Chem. Rev. 2022, 122, 1925. |
| [1] | (b) Yu X.-Y.; Chen J.-R.; Xiao W.-J. Chem. Rev. 2021, 121, 506. |
| [1] | (c) Cheung K. P. S.; Sarkar S.; Gevorgyan V. Chem. Rev. 2022, 122, 1543. |
| [1] | (d) Teegardin K.; Day J. I.; Chan J.; Weaver J. Org. Process Res. Dev. 2016, 20, 1156. |
| [1] | (e) Shaw M. H.; Twilton J.; MacMillan D. W. C. J. Org. Chem. 2016, 81, 6898. |
| [2] | (a) Srivastava V.; Singh P. K.; Tivaria S.; Singh P. P. Org. Chem. Front. 2022, 9, 1485. |
| [2] | (b) Pitre S. P.; Overman L. E. Chem. Rev. 2022, 122, 1717. |
| [2] | (c) Sun C.-L.; Shi Z.-J. Chem. Rev. 2014, 114, 9219. |
| [3] | (a) Romero N. A.; Nicewicz D. A. Chem. Rev. 2016, 116, 10075. |
| [3] | (b) Sideri I. K.; Voutyritsa E.; Kokotos C. G. Org. Biomol. Chem. 2018, 16, 4596. |
| [3] | (c) Fukuzumi S.; Ohkubo K. Org. Biomol. Chem. 2014, 12, 6059. |
| [4] | (a) Lechner H.; Oberdorfer G. ChemBioChem 2022, 23, e202100599. |
| [4] | (b) Liang Y.; Wei J.; Qiu X.; Jiao N. Chem. Rev. 2018, 118, 4912. |
| [5] | (a) Romero E.; Castellanos J. R. G.; Gadda G.; Fraaije M. W.; Mattevi A. Chem. Rev. 2018, 118, 1742. |
| [5] | (b) Silva E.; Edwards A. M. Flavins: Photochemistry and Photobiology, The Royal Society of Chemistry, Cambridge, 2002. |
| [6] | Ghisla S.; Kenney W. C.; Knappe W. R.; McIntire W.; Singer T. P. Biochemistry 1980, 19, 2537. |
| [7] | (a) K?nig B.; Kümmel S.; Svobodová E.; Cibulka R. Phys. Sci. Rev. 2018, 3, 20170168. |
| [7] | (b) Cibulka R.; Fraaije M. W. Flavin-Based Catalysis: Principles and Applications, Wiley-VCH GmbH, Weinheim, 2021. |
| [8] | Fukuzumi S.; Yasui K.; Suenobu T.; Ohkubo K.; Fujitsuka M.; Ito O. J. Phys. Chem. A 2001, 105, 10501. |
| [9] | Emmanuel M. A.; Bender S. G.; Bilodeau C.; Carceller J. M.; DeHovitz J. S.; Fu H.; Liu Y.; Nicholls B. T.; Ouyang Y.; Page C. G.; Qiao T.; Raps F. C.; Sorigué D. R.; Sun S.-Z.; Turek-Herman J.; Ye Y.; Rivas-Souchet A.; Cao J.; Hyster T. K. Chem. Rev. 2023, 123, 5459. |
| [10] | (a) Litman Z. C.; Wang Y.; Zhao H.; Hartwig J. F. Nature 2018, 560, 355. |
| [10] | (b) Huang X.; Wang B.; Wang Y.; Jiang G.; Feng J.; Zhao H. Nature 2020, 584, 69. |
| [10] | (c) Harrison W.; Huang X.; Zhao H. Acc. Chem. Res. 2022, 55, 1087. |
| [11] | (a) Oelgemo?ller M. Chem. Rev. 2016, 116, 9664. |
| [11] | (b) Ding W.; Lu L.‐Q.; Xiao W.‐J. In Green Oxidation in Organic Synthesis, 1st ed., Eds.: Jiao, N.; Stahl, S. S., John Wiley & Sons Ltd., Hoboken, NJ, 2019. |
| [12] | (a) Rehpenn A.; Walte A.; Storch G. Synthesis 2021, 53, 2583. |
| [12] | (b) de Gonzalo G.; Fraaije M. W. ChemCatChem 2013, 5, 403. |
| [12] | (c) Iida H.; Imada Y.; Murahashi S.-I. Org. Biomol. Chem. 2015, 13, 7599. |
| [12] | (d) Cibulka R. Eur. J. Org. Chem. 2015, 2015, 915. |
| [13] | Srivastava V.; Singh P. K.; Srivastava A.; Singh P. P. RSC Adv. 2021, 11, 14251. |
| [14] | Fukuzumi S.; kuroda S.; Tanak T. Chem. Lett. 1984, 417. |
| [15] | Fukuzumi S.; Kuroda S.; Tanaka T. Chem. Lett. 1984, 1375. |
| [16] | Fukuzumi S.; Kuroda S.; Tanaka T. J. Am. Chem. Soc. 1985, 107, 3020. |
| [17] | (a) Fukuzumi S.; Kojima T. J. Biol. Inorg. Chem. 2008, 13, 321. |
| [17] | (b) Fukuzumi S.; Ohkubo K. Coord. Chem. Rev. 2010, 254, 372. |
| [17] | (c) Fukuzumi S.; Jung J.; Lee Y.-M.; Nam W. Asian J. Org. Chem. 2017, 6, 397. |
| [18] | Mühldorf B.; Wolf R. Chem. Commun. 2015, 51, 8425. |
| [19] | Fukuzumi S.; Tanii K.; Tanaka T. J. Chem. Soc., Chem. Commun. 1989, 816. |
| [20] | Mühldorf B.; Wolf R. ChemCatChem 2017, 9, 920. |
| [21] | Zelenka J.; Svobodová E.; Tarábek J.; Hoskovcová I.; Bogus- chová V.; Bailly S.; Sikorski M.; Roithová J.; Cibulka R. Org. Lett. 2019, 21, 114. |
| [22] | Tolba A. H.; Vávra F.; Chudoba J.; Cibulka R. Eur. J. Org. Chem. 2020, 2020, 1579. |
| [23] | Pokluda A.; Anwar Z.; Boguschová V.; Anusiewicz I.; Skurski P.; Sikorski M.; Cibulka R. Adv. Synth. Catal. 2021, 363, 4371. |
| [24] | Graml A.; Nevesely T.; Kutta R. J.; Cibulka R.; K?nig B. Nat. Commun. 2020, 11, 3174. |
| [25] | Obertík R.; Chudoba J.; ?turala J.; Tarábek J.; Ludvíková L.; Slanina T.; K?nig B.; Cibulka R. Chem.-Eur. J. 2022, 28, e202202487. |
| [26] | Lechner R.; Kümmel S.; K?nig B. Photochem. Photobiol. Sci. 2010, 9, 1367. |
| [27] | Taeufer T.; Cordero M. A. A.; Petrosyan A.; Surkus A.-E.; Lochbrunner S.; Pospech J. ChemPhotoChem 2021, 5, 999. |
| [28] | (a) El-Hage F.; Sch?ll C.; Pospech J. J. Org. Chem. 2020, 85, 13853. |
| [28] | (b) Taeufer T.; Hauptmann R.; El-Hage F.; Mayer T. S.; Jiao H.; Rabeah J.; Pospech J. ACS Catal. 2021, 11, 4862. |
| [29] | Aleksander V. Mini-Rev. Org. Chem. 2017, 14, 204. |
| [30] | Shen D.; Zhong F.; Li L.; Zhang H.; Ren T.; Sun C.; Wang B.; Guo M.; Chao M.; Fukuzumi S. Org. Chem. Front. 2023, 10, 2653. |
| [31] | Du?sel S. J. S.; Ko?nig B. J. Org. Chem. 2018, 83, 2802. |
| [32] | Badenock J. C. Radical Reactions of Indole In Heterocyclic Scaffolds II: Topics in Heterocyclic Chemistry, Vol. 26, Ed.: Gribble, G., Springer, Berlin, 2010. |
| [33] | Immel J. R.; Alghafli B. M.; Ugalde A. A. R.; Bloom S. Org. Lett. 2023, 25, 3818. |
| [34] | (a) Weinberg D. R.; Gagliardi C. J.; Hull J. F.; Murphy C. F.; Kent C. A.; Westlake B. C.; Paul A.; Ess D. H.; McCafferty D. G.; Meyer T. J. Chem. Rev. 2012, 112, 4016. |
| [34] | (b) Tyburski R.; Liu T.; Glover S. D.; Hammarstro?m L. J. Am. Chem. Soc. 2021, 143, 560. |
| [35] | Adenier A.; Chehimi M. M.; Gallardo I.; Pinson J.; Vila N. Langmuir 2004, 20, 8243. |
| [36] | Bertolotti S. G.; Previtali C. M.; Rufs A. M.; Encinas M. V. Macromolecules 1999, 32, 2920. |
| [37] | Porcal G.; Bertolotti S. G.; Previtali C. M.; Encinas M. V. Phys. Chem. Chem. Phys. 2003, 5, 4123. |
| [38] | Martinez-Haya R.; Miranda M. A.; Marin M. L. Eur. J. Org. Chem. 2017, 2017, 2164. |
| [39] | Tagami T.; Arakawa Y.; Minagawa K.; Imada Y. Org. Lett. 2019, 21, 6978. |
| [40] | Brown D. G.; Bostr?m J. J. Med. Chem. 2016, 59, 4443. |
| [41] | Tolba A. H.; Krupicka M.; Chudoba J.; Cibulka R. Org. Lett. 2021, 23, 6825. |
| [42] | Wu M.; Jiang Q.; Tian Q.; Guo T.; Cai F.; Tang S.; Liu J.; Wang X. CCS Chem. 2022, 4, 3599. |
| [43] | (a) Wu Y.; Zhou G.; Meng Q.; Tang X.; Liu G.; Yin H.; Zhao J.; Yang F.; Yu Z.; Luo Y. J. Org. Chem. 2018, 83, 13051. |
| [43] | (b) Luo K.; Yu X.; Chen P.; He K.; Lin J.; Jin Y. Tetrahedron Lett. 2020, 61, 151578. |
| [43] | (c) Zhang Y.; Yang X.; Tang H.; Liang D.; Wu J.; Huang D. Green Chem. 2020, 22, 22. |
| [44] | Shen D.; Ren T.; Luo Z.; Sun F.; Han Y.; Chen K.; Zhang X.; Zhou M.; Gong P.; Chao M. Org. Biomol. Chem. 2023, 21, 4955. |
| [45] | (a) Marin M. L.; Santos-Juanes L.; Arques A.; Amat A. M.; Miranda M. A. Chem. Rev. 2012, 112, 1710. |
| [45] | (b) Pavanello A.; Miranda M. A.; Marin M. L. Chem. Eng. J. Adv. 2022, 11, 100296. |
| [46] | (a) Krylov I. B.; Vil’ V. A.; Terent’ev A. O. Beilstein J. Org. Chem. 2015, 11, 92. |
| [46] | (b) Li M.; Hong J.; Xiao W.; Yang Y.; Qiu D.; Mo F. ChemSusChem 2020, 13, 1661. |
| [47] | Bloom S.; Liu C.; K?lmel D. K.; Qiao J. X.; Zhang Y.; Poss M. A.; Ewing W. R.; MacMillan D. W. C. Nat. Chem. 2018, 10, 205. |
| [48] | Sakakibara Y.; Murakami K. ACS Catal. 2022, 12, 1857. |
| [49] | Morack T.; Metternich J. B.; Gilmour R. Org. Lett. 2018, 20, 1316. |
| [50] | Ramirez N. P.; Ko?nig B.; Gonzalez-Gomez J. C. Org. Lett. 2019, 21, 1368. |
| [51] | Ramirez N. P.; Lana-Villarreal T.; Gonzalez-Gomez J. C. Eur. J. Org. Chem. 2020, 2020, 1539. |
| [52] | Zhang B.; Wu H.; Li S.; Liu Y.; Du P.; Wang Z.-G. ACS Catal. 2023, 13, 6763. |
| [53] | (a) Ji H.-F.; Shen L. J. Mol. Struct.: THEOCHEM 2008, 865, 25. |
| [53] | (b) Shen L.; Ji H.-F. J. Photochem. Photobiol. A 2008, 199, 119. |
| [53] | (c) Ji H.-F.; Shen L. J. Mol. Struct.: THEOCHEM 2008, 862, 148. |
| [54] | Roche S. P.; Porco J. A. Jr. Angew. Chem., Int. Ed. 2011, 50, 4068. |
| [55] | Dockrey S. A. B.; Narayan A. R. H. Org. Lett. 2020, 22, 3712. |
| [56] | Skolia E.; Gkizis P. L.; Kokotos C. G. ChemPlusChem 2022, 87, e202200008. |
| [57] | (a) Dad’ová J.; Svobodová E.; Sikorski M.; Ko?nig B.; Cibulka R. ChemCatChem 2012, 4, 620. |
| [57] | (b) Nevesely T.; Svobodová E.; Chudoba J.; Sikorski M.; Cibulka R. Adv. Synth. Catal. 2016, 358, 1654. |
| [58] | Bouchet L. M.; Heredia A. A.; Argu?ello J. E.; Schmidt L. C. Org. Lett. 2020, 22, 610. |
| [59] | Arakawa Y.; Mihara T.; Fujii H.; Minagawa K.; Imada Y. Chem. Commun. 2020, 56, 5661. |
| [60] | Kim Y.; Ho S. O.; Gassman N. R.; Korlann Y.; Landorf E. V.; Collart F. R.; Weiss S. Bioconjugate Chem. 2008, 19, 786. |
| [61] | Kim J.; Li B. X.; Huang R. Y.-C.; Qiao J. X.; Ewing W. R.; MacMillan D. W. C. J. Am. Chem. Soc. 2020, 142, 21260. |
| [62] | (a) Fletcher S. Org. Chem. Front. 2015, 2, 739. |
| [62] | (b) Beddoe R. H.; Andrews K. G.; Magné V.; Cuthbertson J. D.; Saska J.; Shannon-Little A. L.; Shanahan S. E.; Sneddon H. F.; Denton R. M. Science 2019, 365, 910. |
| [63] | M?rz M.; Kohout M.; Nevesely T.; Chudoba J.; Pruka?a D.; Niziński S.; Sikorski M.; Burdziński G.; Cibulka R. Org. Biomol. Chem. 2018, 16, 6809. |
| [64] | (a) Yan M.; Lo J. C.; Edwards J. T.; Baran P. S. J. Am. Chem. Soc. 2016, 138, 12692. |
| [64] | (b) Romero K. J.; Galliher M. S.; Pratt D. A.; Stephenson C. R. J. Chem. Soc. Rev. 2018, 47, 7851. |
| [65] | Chilamari M.; Immel J. R.; Bloom S. ACS Catal. 2020, 10, 12727. |
| [66] | (a) Lu C.; Yao S.; Han Z.; Lin W.; Wang W.; Zhang W.; Lin N. Biophys. Chem. 2000, 85, 17. |
| [66] | (b) Chen W.; Chen J.-J.; Lu R.; Qian C.; Li W.-W.; Yu H.-Q. Bioelectrochemistry 2014, 98, 103. |
| [67] | Du P.; Shen Y.; Zhang B.; Li S.; Gao M.; Wang T.; Ding X.; Yu B.; Wang Z.-G.; Xu F.-J. Adv. Sci. 2023, 10, 2206851. |
/
| 〈 |
|
〉 |