氮杂环卡宾(NHC)催化[3+2]环加成反应高非对映选择性地构建螺氧吲哚二氢呋喃稠合吡唑啉酮化合物
收稿日期: 2023-09-04
修回日期: 2023-11-11
网络出版日期: 2023-11-23
基金资助
国家自然科学基金(22101188); 石河子大学(2022ZK003); 石河子大学(RCZK202001)
N-Heterocyclic Carbene (NHC)-Catalyzed [3+2] Cycloaddition to Highly Diastereoselective Synthesis of Spirooxindole Dihydrofuran Fused Pyrazolone Compounds
Received date: 2023-09-04
Revised date: 2023-11-11
Online published: 2023-11-23
Supported by
National Natural Science Foundation of China(22101188); Shihezi University(2022ZK003); Shihezi University(RCZK202001)
刘岩 , 王晓梅 , 何林 , 李师伍 , 赵志飞 . 氮杂环卡宾(NHC)催化[3+2]环加成反应高非对映选择性地构建螺氧吲哚二氢呋喃稠合吡唑啉酮化合物[J]. 有机化学, 2024 , 44(4) : 1301 -1310 . DOI: 10.6023/cjoc202309004
An efficient N-heterocyclic carbene (NHC)-catalyzed [3+2] cycloaddition of isatin-derived enal and pyrazole-4,5- diones to directly synthesis of spirooxindole dihydrofuran fused pyrazolone compounds containing two vicinal spirocenters was disclosed. This approach was qualified with broad substrate scope, achieving moderate to excellent yield (41%~99%) and general to excellent diastereoselective (2∶1~>20∶1 dr). Furthermore, the reaction has the advantages of mild reaction conditions and easy operation, and the gram scale reaction can also proceed smoothly. This study provides a new synthetic methodology for the efficient construction of multi-functionalized spirooxindole dihydrofuran fused pyrazolone compounds.
Key words: N-heterocyclic carbene; cycloaddition; spirooxindole; pyrazolone
| [1] | (a) Williams R. M.; Cox R. J. Acc. Chem. Res. 2003, 36, 127. |
| [1] | (b) Galliford C. V.; Scheidt K. A. Angew. Chem., Int. Ed. 2007, 46, 8748. |
| [1] | (c) Greshock T. J.; Grubbs A. W.; Jiao P.; Wicklow D. T.; Gloer J. B.; Williams R. M. Angew. Chem., Int. Ed. 2008, 47, 3573. |
| [1] | (d) Mugishima T.; Tsuda M.; Kasai Y.; Ishiyama H.; Fukushi E.; Kawabata J.; Watanabe M.; Akao K.; Kobayashi J. I. J. Org. Chem. 2005, 70, 9430. |
| [1] | (e) Yu B.; Yu D. Q.; Liu H. M. Eur. J. Med. Chem. 2015, 97, 673. |
| [1] | (f) Aeluri M.; Chamakuri S.; Dasari B.; Guduru S. K. R.; Jimmidi R.; Jogula S.; Arya P. Chem. Rev. 2014, 114, 4640. |
| [1] | (g) Kumar R. S.; Antonisamy P.; Almansour A. I.; Arumugam N.; Periyasami G.; Altaf M.; Kim H. R.; Kwon K. B. Eur. J. Med. Chem. 2018, 152, 417. |
| [1] | (h) Sakla A.P.; Kansal P.; Shankaraiah N. Eur. J. Org. Chem. 2021, 2021, 757. |
| [1] | (i) Arun Y.; Bhaskar G.; Balachandran C.; Ignacimuthu S.; Perumal P. T. Bioorg. Med. Chem. Lett. 2013, 23, 1839. |
| [1] | (j) Girgis A. S. Eur. J. Med. Chem. 2009, 44, 91. |
| [1] | (k) Ali M. A.; Ismail R.; Choon T. S.; Yoon Y. K.; Wei A. C.; Pandian S.; Kumar R. S.; Osman H.; Manogaran E. Bioorg. Med. Chem. Lett. 2010, 20, 7064. |
| [2] | (a) Chauhan P.; Mahajan S.; Enders D. Chem. Commun. 2015, 51, 12890. |
| [2] | (b) Zhang J. X.; Li N. K.; Liu Z. M.; Huang X. F.; Geng Z. C.; Wang X. W. Adv. Synth. Catal. 2013, 355, 797. |
| [2] | (c) Li G.; Liang T.; Wojtas L.; Antilla J. C. Angew. Chem., Int. Ed. 2013, 52, 4628. |
| [2] | (d) Chande M. S.; Barve P. A.; Suryanarayan V. J. Heterocycl. Chem. 2007, 44, 49. |
| [2] | (e) Fustero S.; Sanchez-Rosello ? M.; Barrio P.; Simon- Fuentes A. Chem. Rev. 2011, 111, 6984. |
| [3] | Das D.; Banerjee R.; Mitra A. J. Chem. Pharm. Res. 2014, 6, 108. |
| [4] | Chen Q.; Liang J.; Wang S.; Wang D.; Wang R. Chem. Commun. 2013, 49, 1657. |
| [5] | Cui B. D.; Li S. W.; Zuo J.; Wu Z. J.; Zhang X. M.; Yuan W. C. Tetrahedron 2014, 70, 1895. |
| [6] | Li J. H.; Feng T. F.; Du D. M. J. Org. Chem. 2015, 80, 11369. |
| [7] | Bao X.; Wei S.; Qian X.; Qu J.; Wang B.; Zou L.; Ge G. Org. Lett. 2018, 20, 3394. |
| [8] | Liu X. L.; Zuo X.; Wang J. X.; Chang S. Q.; Wei Q. D.; Zhou Y. Org. Chem. Front. 2019, 6, 1485. |
| [9] | Lin Y.; Zhao B. L.; Du D. M. J. Org. Chem. 2019, 84, 10209. |
| [10] | Wang C.; Wen D.; Chen H.; Deng Y.; Liu X.; Liu X.; Wang L.; Gao F.; Guo Y.; Sun M.; Wang K.; Yan W. Org. Biomol. Chem. 2019, 17, 5514. |
| [11] | Warghude P. K.; Sabalea A. S.; Bhat R. G. Org. Biomol. Chem. 2020, 18, 1794. |
| [12] | Warghude P. K.; Bhowmick A.; Bhat R. G. Tetrahedron Lett. 2022, 97, 153791. |
| [13] | (a) Kaya U.; Chauhan P.; Mahajan S.; Deckers K.; Valkonen A.; Rissanen K.; Enders D. Angew. Chem., Int. Ed. 2017, 56, 15358. |
| [13] | (b) Qin R.; Yu T. T.; Liu S. J.; Wang Y. C.; Luo M. L.; Chen B. H.; Zhao Q.; Huang W. J. Org. Chem. 2022, 87, 5358. |
| [13] | (c) Kumar K.; Singh B.; Hore S.; Singh R. P. New J. Chem. 2021, 45, 13747. |
| [13] | (d) Enders D.; Vetica F.; Chauhan P.; Mahajan S.; Raabe G. Synthesis 2018, 50, 1039. |
| [13] | (e) Ordó?ez M. G.; Maestro A.; Andrés J. M. J. Org. Chem. 2023, 88, 6890. |
| [14] | (a) Enders D.; Niemeier O.; Henseler A. Chem. Rev. 2007, 107, 5606. |
| [14] | (b) Flanigan D. M.; Michailidis F. R.; White N. A.; Rovis T. Chem. Rev. 2015, 115, 9307. |
| [15] | Zhao Z. F.; Yang S.; Lang S. A.; Liu J. G.; Liu S. S.; Fang X. Q. Adv. Synth. Catal. 2019, 361, 3943. |
| [16] | (a) Zhang Z. J.; Zhang L.; Geng R. L.; Song J.; Chen X. H.; Gong L. Z. Angew. Chem., Int. Ed. 2019, 131, 12318. |
| [16] | (b) Wen Y. H.; Zhang Z. J.; Li S.; Song J.; Gong L. Z. Nat. Commun. 2022, 10, 5553. |
| [16] | (c) Liu Q.; Chen X. Y. S.; Li.; Rissanen, K.; Enders, D. Adv. Synth. Catal. 2019, 361, 1991. |
| [16] | (d) Lin J. B.; Cheng X. N.; Tian X. D.; Xu G. Q.; Luo Y. C.; Xu P. F. RSC Adv. 2018, 8, 15444. |
| [17] | Li Z. F.; He H. J.; Wang R. H.; Zhou L. Y.; Xiao Y. C.; Chen F. E. Org. Chem. Front. 2022, 9, 2792. |
| [18] | Vivekanand T.; Vachan B. S.; Karuppasamy M.; Muthukrishnan I.; Maheswari C. U.; Nagarajan S.; Bhuvanesh N.; Sridharan V. J. Org. Chem. 2019, 84, 4009. |
/
| 〈 |
|
〉 |