研究论文

氮杂环卡宾(NHC)催化[3+2]环加成反应高非对映选择性地构建螺氧吲哚二氢呋喃稠合吡唑啉酮化合物

  • 刘岩 ,
  • 王晓梅 ,
  • 何林 ,
  • 李师伍 ,
  • 赵志飞
展开
  • 石河子大学化学化工学院 化工绿色过程省部共建国家重点实验室培育基地 新疆石河子 832000

收稿日期: 2023-09-04

  修回日期: 2023-11-11

  网络出版日期: 2023-11-23

基金资助

国家自然科学基金(22101188); 石河子大学(2022ZK003); 石河子大学(RCZK202001)

N-Heterocyclic Carbene (NHC)-Catalyzed [3+2] Cycloaddition to Highly Diastereoselective Synthesis of Spirooxindole Dihydrofuran Fused Pyrazolone Compounds

  • Yan Liu ,
  • Xiaomei Wang ,
  • Lin He ,
  • Shiwu Li ,
  • Zhifei Zhao
Expand
  • State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, Xinjiang 832000

Received date: 2023-09-04

  Revised date: 2023-11-11

  Online published: 2023-11-23

Supported by

National Natural Science Foundation of China(22101188); Shihezi University(2022ZK003); Shihezi University(RCZK202001)

摘要

在氮杂环卡宾(NHC)催化下, 靛红衍生的烯醛与吡唑啉酮4,5-二酮化合物经[3+2]环加成反应高效生成含连续两个螺中心的螺氧吲哚二氢呋喃稠合吡唑啉酮化合物. 该反应具有很好的底物普适性, 获得了中等到优异的产率(41%~99%)和一般到优良的非对映选择性(2∶1~>20∶1 dr). 此外, 反应还具有反应条件温和及操作简便的优点, 并且克级反应也能顺利进行. 该研究为高效构建官能团化的螺氧吲哚二氢呋喃稠合吡唑啉酮化合物提供了新的合成方法学.

本文引用格式

刘岩 , 王晓梅 , 何林 , 李师伍 , 赵志飞 . 氮杂环卡宾(NHC)催化[3+2]环加成反应高非对映选择性地构建螺氧吲哚二氢呋喃稠合吡唑啉酮化合物[J]. 有机化学, 2024 , 44(4) : 1301 -1310 . DOI: 10.6023/cjoc202309004

Abstract

An efficient N-heterocyclic carbene (NHC)-catalyzed [3+2] cycloaddition of isatin-derived enal and pyrazole-4,5- diones to directly synthesis of spirooxindole dihydrofuran fused pyrazolone compounds containing two vicinal spirocenters was disclosed. This approach was qualified with broad substrate scope, achieving moderate to excellent yield (41%~99%) and general to excellent diastereoselective (2∶1~>20∶1 dr). Furthermore, the reaction has the advantages of mild reaction conditions and easy operation, and the gram scale reaction can also proceed smoothly. This study provides a new synthetic methodology for the efficient construction of multi-functionalized spirooxindole dihydrofuran fused pyrazolone compounds.

参考文献

[1]
(a) Williams R. M.; Cox R. J. Acc. Chem. Res. 2003, 36, 127.
[1]
(b) Galliford C. V.; Scheidt K. A. Angew. Chem., Int. Ed. 2007, 46, 8748.
[1]
(c) Greshock T. J.; Grubbs A. W.; Jiao P.; Wicklow D. T.; Gloer J. B.; Williams R. M. Angew. Chem., Int. Ed. 2008, 47, 3573.
[1]
(d) Mugishima T.; Tsuda M.; Kasai Y.; Ishiyama H.; Fukushi E.; Kawabata J.; Watanabe M.; Akao K.; Kobayashi J. I. J. Org. Chem. 2005, 70, 9430.
[1]
(e) Yu B.; Yu D. Q.; Liu H. M. Eur. J. Med. Chem. 2015, 97, 673.
[1]
(f) Aeluri M.; Chamakuri S.; Dasari B.; Guduru S. K. R.; Jimmidi R.; Jogula S.; Arya P. Chem. Rev. 2014, 114, 4640.
[1]
(g) Kumar R. S.; Antonisamy P.; Almansour A. I.; Arumugam N.; Periyasami G.; Altaf M.; Kim H. R.; Kwon K. B. Eur. J. Med. Chem. 2018, 152, 417.
[1]
(h) Sakla A.P.; Kansal P.; Shankaraiah N. Eur. J. Org. Chem. 2021, 2021, 757.
[1]
(i) Arun Y.; Bhaskar G.; Balachandran C.; Ignacimuthu S.; Perumal P. T. Bioorg. Med. Chem. Lett. 2013, 23, 1839.
[1]
(j) Girgis A. S. Eur. J. Med. Chem. 2009, 44, 91.
[1]
(k) Ali M. A.; Ismail R.; Choon T. S.; Yoon Y. K.; Wei A. C.; Pandian S.; Kumar R. S.; Osman H.; Manogaran E. Bioorg. Med. Chem. Lett. 2010, 20, 7064.
[2]
(a) Chauhan P.; Mahajan S.; Enders D. Chem. Commun. 2015, 51, 12890.
[2]
(b) Zhang J. X.; Li N. K.; Liu Z. M.; Huang X. F.; Geng Z. C.; Wang X. W. Adv. Synth. Catal. 2013, 355, 797.
[2]
(c) Li G.; Liang T.; Wojtas L.; Antilla J. C. Angew. Chem., Int. Ed. 2013, 52, 4628.
[2]
(d) Chande M. S.; Barve P. A.; Suryanarayan V. J. Heterocycl. Chem. 2007, 44, 49.
[2]
(e) Fustero S.; Sanchez-Rosello ? M.; Barrio P.; Simon- Fuentes A. Chem. Rev. 2011, 111, 6984.
[3]
Das D.; Banerjee R.; Mitra A. J. Chem. Pharm. Res. 2014, 6, 108.
[4]
Chen Q.; Liang J.; Wang S.; Wang D.; Wang R. Chem. Commun. 2013, 49, 1657.
[5]
Cui B. D.; Li S. W.; Zuo J.; Wu Z. J.; Zhang X. M.; Yuan W. C. Tetrahedron 2014, 70, 1895.
[6]
Li J. H.; Feng T. F.; Du D. M. J. Org. Chem. 2015, 80, 11369.
[7]
Bao X.; Wei S.; Qian X.; Qu J.; Wang B.; Zou L.; Ge G. Org. Lett. 2018, 20, 3394.
[8]
Liu X. L.; Zuo X.; Wang J. X.; Chang S. Q.; Wei Q. D.; Zhou Y. Org. Chem. Front. 2019, 6, 1485.
[9]
Lin Y.; Zhao B. L.; Du D. M. J. Org. Chem. 2019, 84, 10209.
[10]
Wang C.; Wen D.; Chen H.; Deng Y.; Liu X.; Liu X.; Wang L.; Gao F.; Guo Y.; Sun M.; Wang K.; Yan W. Org. Biomol. Chem. 2019, 17, 5514.
[11]
Warghude P. K.; Sabalea A. S.; Bhat R. G. Org. Biomol. Chem. 2020, 18, 1794.
[12]
Warghude P. K.; Bhowmick A.; Bhat R. G. Tetrahedron Lett. 2022, 97, 153791.
[13]
(a) Kaya U.; Chauhan P.; Mahajan S.; Deckers K.; Valkonen A.; Rissanen K.; Enders D. Angew. Chem., Int. Ed. 2017, 56, 15358.
[13]
(b) Qin R.; Yu T. T.; Liu S. J.; Wang Y. C.; Luo M. L.; Chen B. H.; Zhao Q.; Huang W. J. Org. Chem. 2022, 87, 5358.
[13]
(c) Kumar K.; Singh B.; Hore S.; Singh R. P. New J. Chem. 2021, 45, 13747.
[13]
(d) Enders D.; Vetica F.; Chauhan P.; Mahajan S.; Raabe G. Synthesis 2018, 50, 1039.
[13]
(e) Ordó?ez M. G.; Maestro A.; Andrés J. M. J. Org. Chem. 2023, 88, 6890.
[14]
(a) Enders D.; Niemeier O.; Henseler A. Chem. Rev. 2007, 107, 5606.
[14]
(b) Flanigan D. M.; Michailidis F. R.; White N. A.; Rovis T. Chem. Rev. 2015, 115, 9307.
[15]
Zhao Z. F.; Yang S.; Lang S. A.; Liu J. G.; Liu S. S.; Fang X. Q. Adv. Synth. Catal. 2019, 361, 3943.
[16]
(a) Zhang Z. J.; Zhang L.; Geng R. L.; Song J.; Chen X. H.; Gong L. Z. Angew. Chem., Int. Ed. 2019, 131, 12318.
[16]
(b) Wen Y. H.; Zhang Z. J.; Li S.; Song J.; Gong L. Z. Nat. Commun. 2022, 10, 5553.
[16]
(c) Liu Q.; Chen X. Y. S.; Li.; Rissanen, K.; Enders, D. Adv. Synth. Catal. 2019, 361, 1991.
[16]
(d) Lin J. B.; Cheng X. N.; Tian X. D.; Xu G. Q.; Luo Y. C.; Xu P. F. RSC Adv. 2018, 8, 15444.
[17]
Li Z. F.; He H. J.; Wang R. H.; Zhou L. Y.; Xiao Y. C.; Chen F. E. Org. Chem. Front. 2022, 9, 2792.
[18]
Vivekanand T.; Vachan B. S.; Karuppasamy M.; Muthukrishnan I.; Maheswari C. U.; Nagarajan S.; Bhuvanesh N.; Sridharan V. J. Org. Chem. 2019, 84, 4009.
文章导航

/