研究论文

硅宾与质子氢分子的氧化加成反应合成硅氢物种

  • 孔德亮 ,
  • 杨萧昂 ,
  • 赵怡玲 ,
  • 彭彦博 ,
  • 朱红平
展开
  • 厦门大学化学化工学院 固体表面物理化学国家重点实验室 厦门 361005
† 共同第一作者.

收稿日期: 2023-09-07

  修回日期: 2023-10-24

  网络出版日期: 2023-11-23

基金资助

国家自然科学基金(21972112); 福建省产学研(2021H6002)

Synthesis of the Hydrosilicon Species via Oxidative Addition of Silylene toward the Proton-Containing Molecules

  • Deliang Kong ,
  • Xiaoang Yang ,
  • Yiling Zhao ,
  • Yanbo Peng ,
  • Hongping Zhu
Expand
  • State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005
† The authors contributed equally to this work.

Received date: 2023-09-07

  Revised date: 2023-10-24

  Online published: 2023-11-23

Supported by

National Natural Science Foundation of China(21972112); Productive Research Program of Fujian Province(2021H6002)

摘要

硅宾与质子氢分子的氧化加成反应是合成硅氢物种的一种有效方法. 使用脒基硼胺基硅宾(L)[(1,5-C8H14)B- (R)N]Si [L=PhC(NtBu)2; R=2,4,6-Me3C6H2 (1)、2,6-iPr2C6H3 (2)、1-C10H15 (3)], 分别与N-二苯甲基氮杂环丁烷-3-醇反应生成脒基硼胺基烷氧基硅氢(L)[(1,5-C8H14)B(R)N]Si(H)[O-cyclo-CH(CH2)2N(CHPh2)] (4~6); 与硫醇(2-萘硫醇、对氟苯硫醇、邻氯苯硫醇)反应生成脒基硼胺基芳巯基硅氢(L)[(1,5-C8H14)B(R)N]Si(H)(SR') (7~14). 硅宾1与二苯胺反应生成脒基硼胺基胺基硅氢(L)[(1,5-C8H14)B(2,4,6-Me3C6H2)N]Si(H)(NPh2) (15). 化合物4~15都进行了核磁共振波谱和元素分析表征, 其中化合物5711进行了X射线单晶衍射结构的测定. 化合物4~15都是结构和组成新颖的硅氢物种, 硅中心键联四个不同的基团, 经由硅宾Si:中心分别对质子氢分子的O—H、S—H、N—H键的氧化加成反应生成, 其中质子氢发生极性反转, 形成键联于硅中心的负氢基.

本文引用格式

孔德亮 , 杨萧昂 , 赵怡玲 , 彭彦博 , 朱红平 . 硅宾与质子氢分子的氧化加成反应合成硅氢物种[J]. 有机化学, 2024 , 44(4) : 1311 -1318 . DOI: 10.6023/cjoc202309007

Abstract

The oxidative addition reaction of silylenes with proton-containing molecules is an effective method for synthesis of hydrosilicon species. Herein, amidinatoborylaminosilylenes (L)[(1,5-C8H14)B(R)N]Si [L=PhC(NtBu)2; R=2,4,6-Me3C6H2 (1), 2,6-iPr2C6H3 (2), 1-C10H15 (3)] were employed, each of which reacted with 1-(diphenylmethyl)-3-hydroxyazetidine to produce the derived alkoxyl hydrosilicon compounds (L)[(1,5-C8H14)B(R)N]Si(H)[O-cyclo-CH(CH2)2N(CHPh2)] (4~6), and with mercaptans as 2-naphthalenethiol, 4-fluorothiophenol, 2-chlorobenzenethiol to yield thiol hydrosilicon compounds (L)- [(1,5-C8H14)B(R)N]Si(H)(SR') (7~14). Silylene 1 reacted with diphenylamine to give (L)[(1,5-C8H14)B(2,4,6-Me3C6H2)N]- Si(H)(NPh2) (15). Compounds 4~15 have been characterized by NMR spectra and elemental analysis, of which 5, 7 and 11 were further confirmed by X-ray crystallography. Compounds 4~15 are the hydrosilicon species with novel structures and compositions, all of which are bonded by four different groups, being generated by the oxidative addition reaction via the silylene Si: center toward the respective O—H, S—H, and N—H bonds of the proton-containing molecules, where a mode of a charge reversal of the proton into the hydride group at the Si center is realized.

参考文献

[1]
Rodriguez R.; Gau D.; Contie Y.; Kato T.; Saffon-Merceron N.; Baceiredo A. Angew. Chem., Int. Ed. 2011, 50, 11492.
[2]
Buff H.; W?hler F. Justus Liebigs Ann. Chem. 1857, 104, 94.
[3]
Tarczay G.; Fo?rstel M.; Maksyutenko P.; Kaiser P. I. Inorg. Chem. 2016, 55, 8776.
[4]
Crivello J. V.; Bi D. J. Polym. Sci., Part A: Polym. Chem. 1993, 31, 2729.
[5]
Sheldrick W. S. In The Chemistry of Organic Silicon Compounds, Eds: Patai, S.; Rappoport, Z., John Wiley & Sons, Hoboken, 1989, Chapter 3.
[6]
Mizuhata Y.; Sasamori T.; Tokitoh N. Chem. Rev. 2009, 109, 3479.
[7]
Yao S.; Xiong Y.; Driess M. Organometallics 2011, 30, 1748.
[8]
Asay M.; Jones C.; Driess M. Chem. Rev. 2011, 111, 354.
[9]
Sen S. S.; Khan S.; Nagendran S.; Roesky H. W. Acc. Chem. Res. 2012, 45, 578.
[10]
Koike T.; Honda S.; Ishida S.; Iwamoto T. Organometallics 2020, 39, 4149.
[11]
Azhakar R.; Ghadwal R. S.; Roesky H. W.; Hey J.; Stalke D. Organometallics 2011, 30, 3853.
[12]
(a) Yao S.; van Wüllen C.; Sun X.-Y.; Driess M. Angew. Chem., Int. Ed. 2008, 47, 3250.
[12]
(b) Meltzer A.; Inoue S.; Pr?sang C.; Driess M. J. Am. Chem. Soc. 2010, 132, 3038.
[12]
(c) Jana A.; Samuel P. P.; Tav?ar G.; Roesky H. W.; Schulzke C. J. Am. Chem. Soc. 2010, 132, 10164.
[13]
Seitz A. E.; Eckhardt M.; Sakya S. S.; Erlebach A.; Peresypkina E. V.; Roesky H. W.; Sierka M.; Scheer M. Angew. Chem., Int. Ed. 2017, 56, 6655.
[14]
Parvin N.; Pal S.; Khan S.; Das S.; Pati S. K.; Roesky H. W. Inorg. Chem. 2017, 56, 1706.
[15]
Jutzi P.; Bunte E.-A.; Holtmann U.; Neumann B.; Stammler H.-G. J. Organomet. Chem. 1993, 446, 139.
[16]
Haaf M.; Schmiedl A.; Schmedake T. A.; Powell D. R.; Millevolte A. J.; Denk M.; West R. J. Am. Chem. Soc. 1998, 120, 12714.
[17]
Lee G.-H.; West R.; Mu?ller T. J. Am. Chem. Soc. 2003, 125, 8114.
[18]
(a) Driess M.; Yao S.; Brym M.; van Wüllen C.; Lentz D. J. Am. Chem. Soc. 2006, 128, 9628.
[18]
(b) Yao S.; Brym M.; van Wüllen C.; Driess M. Angew. Chem., nt. Ed. 2007, 46, 4159.
[19]
Jana A.; Schulzke C.; Roesky H. W. J. Am. Chem. Soc., 2009, 131, 4600.
[20]
Li J.; Liu Y.; Kundu S.; Keil H.; Zhu H.; Herbst-Irmer R.; Stalke D.; Roesky H. W. Inorg. Chem. 2020, 59, 7910.
[21]
Zhao Y.; Chen Y.; Zhang L.; Li J.; Peng Y.; Chen Z.; Jiang L.; Zhu H. Inorg. Chem. 2022, 61, 5215.
[22]
Kong D.; Dai W.; Zhao Y.; Chen Y.; Zhu H. Chin. J. Org. Chem. 2023, 43, 1843. (in Chinese)
[22]
(孔德亮, 戴闻, 赵怡玲, 陈艺林, 朱红平, 有机化学, 2023, 43, 1843.)
[23]
Benedek Z.; Szilvási T. RSC Adv. 2015, 5, 5077.
[24]
Cong S.; Liu M.; Peng S.; Zheng Q.; Li M.; Guo Y.; Luo F. Chin. J. Org. Chem. 2022, 42, 384. (in Chinese)
[24]
(从思琪, 刘梦亚, 彭思远, 郑秋翠, 李梦娇, 郭艳, 罗斐贤, 有机化学, 2022, 42, 384.)
[25]
Oestreich M.; Hermeke J.; Mohr J. Chem. Soc. Rev. 2015, 44, 2202.
[26]
Jana A.; Leusser D.; Objartel I.; Roesky H. W.; Stalke D. Dalton Trans. 2011, 40, 5458.
[27]
?z E.; Ko? S.; ?inbilgel ?.; Yan?ko?lu A.; ?etin H. Marmara Pharm. J. 2018, 22, 322.
文章导航

/