钯催化的碳(sp3)-硅键转化实现碳(sp3)-碳(sp2)偶联制备三氟丙基(杂)芳烃
收稿日期: 2023-10-16
修回日期: 2023-11-13
网络出版日期: 2023-11-23
基金资助
深圳市基础研究(JCYJ20190807155201669)
Palladium-Catalyzed C(sp3)—Si Bonds Transformation for Construct-ing Trifluoropropyl (Hetero)arenes through C(sp3)—C(sp2) Cross-Coupling Reactions
Received date: 2023-10-16
Revised date: 2023-11-13
Online published: 2023-11-23
Supported by
Shenzhen Fundamental Research Program(JCYJ20190807155201669)
刘君君 , 卢涛涛 , 马平 , 赵庆阳 , 邝福儿 . 钯催化的碳(sp3)-硅键转化实现碳(sp3)-碳(sp2)偶联制备三氟丙基(杂)芳烃[J]. 有机化学, 2024 , 44(4) : 1319 -1326 . DOI: 10.6023/cjoc202310013
Palladium-catalyzed C(sp3)—Si bonds transformation of commercially available polyalkoxy trifluorosilane reagents has been developed through C(sp3)—C(sp2) cross-coupling reactions. This Hiyama cross-coupling reaction shows good functional group tolerance and provides a series of trifluoropropyl (hetero)arenes. The fluoride source and alkyl tether of bisphosphine ligand play important roles in improving yields.
| [1] | (a) Meijere A. D.; Br?se S.; Oestreich M. Metal-Catalyzed Cross-Coupling Reactions and More, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2014. |
| [1] | (b) Cherney A. H.; Kadunce N. T.; Reisman S. E. Chem. Rev. 2015, 115, 9587. |
| [2] | Denmark S. E.; Regens C. S. Acc. Chem. Res. 2008, 41, 1486. |
| [3] | (a) Denmark S. E.; Sweis R. F. In Metal-Catalyzed Cross-Coup- ling Reactions and More, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2014, pp. 475-532. |
| [3] | (b) Sore H. F.; Galloway W. R. J. D.; Spring D. R. Chem. Soc. Rev. 2012, 41, 1845. |
| [3] | (c) Sivakumar S.; Aneeja T.; Anilkumar G. ARKIVOC 2023, 2022, 295. |
| [3] | (d) Komiyama T.; Minami Y.; Hiyama T. ACS Catal. 2017, 7, 631. |
| [4] | Manolikakes G. In Comprehensive Organic Synthesis II, 2 ed., Elsevier, Amsterdam, 2014, pp. 392-464. |
| [5] | Jana R.; Pathak T. P.; Sigman M. S. Chem. Rev. 2011, 111, 1417. |
| [6] | Denmark S. E.; Baird J. D. Chem.-Eur. J. 2006, 12, 4954. |
| [7] | (a) Hatanaka Y.; Hiyama T. Tetrahedron Lett. 1988, 29, 97. |
| [7] | (b) Hatanaka Y.; Hiyama T. Tetrahedron Lett. 1990, 31, 2719. |
| [7] | (c) Hiyama T.; Hatanaka Y. Pure Appl. Chem. 1994, 66, 1471. |
| [7] | (d) Matsuhashi H.; Kuroboshi M.; Hatanaka Y.; Hiyama T. Tetrahedron Lett. 1994, 35, 6507. |
| [7] | (e) Hayao M.; Satoshi A.; Kazunori H.; Yasuo H.; Atsunori M.; Tamejiro H. Bull. Chem. Soc. Jpn. 1997, 70, 437. |
| [7] | (f) Schweizer S. A.; Bach T. Synlett 2010, 2010, 81. |
| [8] | (a) Nakao Y.; Takeda M.; Matsumoto T.; Hiyama T. Angew. Chem., Int. Ed. 2010, 49, 4447. |
| [8] | (b) Itami K.; Mineno M.; Kamei T.; Yoshida J.-I. Org. Lett. 2002, 4, 3635. |
| [8] | (c) Lin K.; Wiles R. J.; Kelly C. B.; Davies G. H. M.; Molander G. A. ACS Catal. 2017, 7, 5129. |
| [9] | Denmark S. E.; Sweis R. F. Chem. Pharm. Bull. 2002, 50, 1531. |
| [10] | (a) Zhou Y.; Wang J.; Gu Z.; Wang S.; Zhu W.; Ace?a J. L.; Soloshonok V. A.; Izawa K.; Liu H. Chem. Rev. 2016, 116, 422. |
| [10] | (b) Meanwell N. A. J. Med. Chem. 2018, 61, 5822. |
| [10] | (c) Ogawa Y.; Tokunaga E.; Kobayashi O.; Hirai K.; Shibata N. iScience 2020, 23, 101467. |
| [10] | (d) Inoue M.; Sumii Y.; Shibata N. ACS Omega 2020, 5, 10633. |
| [10] | (e) Rong G.; Wang C.; Chen L.; Yan Y.; Cheng Y. Sci. Adv. 2020, 6, aaz1774. |
| [11] | (a) Jia H.; H?ring A. P.; Berger F.; Zhang L.; Ritter T. J. Am. Chem. Soc. 2021, 143, 7623. |
| [11] | (b) Qing F.-L.; Liu X.-Y.; Ma J.-A.; Shen Q.; Song Q.; Tang P. CCS Chem. 2022, 4, 2518. |
| [11] | (c) Chen D.; Yang W.; Yao Y.; Yang X.; Deng Y.; Yang D. Chin. J. Org. Chem. 2018, 38, 2571. (in Chinese) |
| [11] | (陈董涵, 杨文, 姚永祺, 杨新, 邓颖颍, 杨定乔, 有机化学, 2018, 38, 2571.) |
| [11] | (d) Chen D.; Jiang J.; Wan J.-P. Chin. J. Chem. 2022, 40, 2582. |
| [11] | (e) Ma R.; Deng Z.; Wang K.; Huang D.; Hu Y.; Lü X. Chin. J. Org. Chem. 2022, 42, 353. (in Chinese) |
| [11] | (马然松, 邓周斌, 王克虎, 黄丹凤, 胡雨来, 闾肖波, 有机化学, 2022, 42, 353.) |
| [12] | Liang T.; Neumann C. N.; Ritter T. Angew. Chem. Int. Ed. 2013, 52, 8214. |
| [13] | (a) Prakash G. K. S.; Krishnan H. S.; Jog P. V.; Iyer A. P.; Olah G. A. Org. Lett. 2012, 14, 1146. |
| [13] | (b) Egami H.; Sodeoka M. Angew. Chem., Int. Ed. 2014, 53, 8294. |
| [13] | (c) Choi S.; Kim Y. J.; Kim S. M.; Yang J. W.; Kim S. W.; Cho E. J. Nat. Commun. 2014, 5, 4881. |
| [13] | (d) Yu X.; Cohen S. M. J. Am. Chem. Soc. 2016, 138, 12320. |
| [13] | (e) Duan Y.; Lin J.-H.; Xiao J.-C.; Gu Y.-C. Org. Chem. Front. 2017, 4, 1917. |
| [13] | (f) Straathof N. J. W.; Cramer S. E.; Hessel V.; No?l T. Angew. Chem., Int. Ed. 2016, 55, 15549. |
| [14] | (a) Tan X.; Liu Z.; Shen H.; Zhang P.; Zhang Z.; Li C. J. Am. Chem. Soc. 2017, 139, 12430. |
| [14] | (b) Chen Y.; Ma G.; Gong H. Org. Lett. 2018, 20, 4677. |
| [14] | (c) Kautzky J. A.; Wang T.; Evans R. W.; MacMillan D. W. C. J. Am. Chem. Soc. 2018, 140, 6522. |
| [14] | (d) Kornfilt D. J. P.; MacMillan D. W. C. J. Am. Chem. Soc. 2019, 141, 6853. |
| [14] | (e) Zhao X.; MacMillan D. W. C. J. Am. Chem. Soc. 2020, 142, 19480. |
| [14] | (f) Cao Y.; Ahmadi R.; Poor Heravi M. R.; Issakhov A.; Ebadi A. G.; Vessally E. RSC Adv. 2021, 11, 39593. |
| [14] | (g) Intermaggio N. E.; Millet A.; Davis D. L.; MacMillan D. W. C. J. Am. Chem. Soc. 2022, 144, 11961. |
| [15] | (a) Chen Q.-Y.; Wu S.-W. J. Chem. Soc.,Chem. Commun. 1989, 705. |
| [15] | (b) Chen Q.-Y.; Duan J.-X. Tetrahedron Lett. 1993, 34, 4241. |
| [15] | (c) Sevenard D. V.; Kirsch P.; R?schenthaler G.-V.; Movchun V. N.; Kolomeitsev A. A. Synlett 2001, 379. |
| [15] | (d) Tyrra W.; Naumann D.; Quadt S.; Buslei S.; Yagupolskii Y. L.; Kremlev M. M. J. Fluorine Chem. 2007, 128, 813. |
| [16] | Xu J.; Xiao B.; Xie C.-Q.; Luo D.-F.; Liu L.; Fu Y. Angew. Chem., Int. Ed. 2012, 51, 12551. |
| [17] | Wang F.; Xu P.; Cong F.; Tang P. Chem. Sci. 2018, 9, 8836. |
| [18] | (a) Fu W. C.; Zheng B.; Zhao Q.; Chan W. T. K.; Kwong F. Y. Org. Lett. 2017, 19, 4335. |
| [18] | (b) Yang Q.; Choy P. Y.; Zhao Q.; Leung M. P.; Chan H. S.; So C. M.; Wong W.-T.; Kwong F. Y. J. Org. Chem. 2018, 83, 11369. |
| [18] | (c) Zhao Q.; Fu W. C.; Kwong F. Y. Angew. Chem. Int. Ed. 2018, 57, 3381. |
| [18] | (d) Zhao Q.; Choy P. Y.; Li L.; Kwong F. Y. Tetrahedron Lett. 2021, 62, 152670. |
| [18] | (e) Wong S. M.; Choy P. Y.; Zhao Q.; Yuen O. Y.; Yeung C. C.; So C. M.; Kwong F. Y. Organometallics 2021, 40, 2265. |
| [18] | (f) Zhao Q.; Yu L.; Zhang Y.-D.; Guo Y.-Q.; Chen M.; Ren Z.-H.; Guan Z.-H. Nat. Commun. 2023, 14, 2572. |
| [19] | (a) Yuen O. Y.; So C. M.; Man H. W.; Kwong F. Y. Chem.-Eur. J. 2016, 22, 6471. |
| [19] | (b) So C. M.; Lee H. W.; Lau C. P.; Kwong F. Y. Org. Lett. 2009, 11, 317. |
| [20] | Prakash G. K. S.; Krishnamurti R.; Olah G. A. J. Am. Chem. Soc. 1989, 111, 393. |
| [21] | Tse M. H.; Choy P. Y.; Kwong F. Y. Acc. Chem. Res. 2022, 55, 3688. |
/
| 〈 |
|
〉 |