研究论文

钯催化的碳(sp3)-硅键转化实现碳(sp3)-碳(sp2)偶联制备三氟丙基(杂)芳烃

  • 刘君君 ,
  • 卢涛涛 ,
  • 马平 ,
  • 赵庆阳 ,
  • 邝福儿
展开
  • a 中山大学?深圳药学院(深圳) 广东深圳 518107
    b 香港中文大学化学系 香港

收稿日期: 2023-10-16

  修回日期: 2023-11-13

  网络出版日期: 2023-11-23

基金资助

深圳市基础研究(JCYJ20190807155201669)

Palladium-Catalyzed C(sp3)—Si Bonds Transformation for Construct-ing Trifluoropropyl (Hetero)arenes through C(sp3)—C(sp2) Cross-Coupling Reactions

  • Junjun Liu ,
  • Taotao Lu ,
  • Ping Ma ,
  • Qingyang Zhao ,
  • Fuk Yee Kwong
Expand
  • a School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107
    b Department of Chemistry, The Chinese University of Hong Kong, Hong Kong

Received date: 2023-10-16

  Revised date: 2023-11-13

  Online published: 2023-11-23

Supported by

Shenzhen Fundamental Research Program(JCYJ20190807155201669)

摘要

使用商业可得的三烷氧基三氟丙基硅试剂, 通过钯催化的碳(sp3)-硅键转化实现了C(sp3)—C(sp2)偶联反应. 该偶联反应方法具有良好的官能团兼容性, 可以有效制备一系列含多种官能团的三氟丙基(杂)芳烃. 氟离子添加剂和双膦配体的脂肪链的调节对于提高反应效率有重要的作用.

本文引用格式

刘君君 , 卢涛涛 , 马平 , 赵庆阳 , 邝福儿 . 钯催化的碳(sp3)-硅键转化实现碳(sp3)-碳(sp2)偶联制备三氟丙基(杂)芳烃[J]. 有机化学, 2024 , 44(4) : 1319 -1326 . DOI: 10.6023/cjoc202310013

Abstract

Palladium-catalyzed C(sp3)—Si bonds transformation of commercially available polyalkoxy trifluorosilane reagents has been developed through C(sp3)—C(sp2) cross-coupling reactions. This Hiyama cross-coupling reaction shows good functional group tolerance and provides a series of trifluoropropyl (hetero)arenes. The fluoride source and alkyl tether of bisphosphine ligand play important roles in improving yields.

参考文献

[1]
(a) Meijere A. D.; Br?se S.; Oestreich M. Metal-Catalyzed Cross-Coupling Reactions and More, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2014.
[1]
(b) Cherney A. H.; Kadunce N. T.; Reisman S. E. Chem. Rev. 2015, 115, 9587.
[2]
Denmark S. E.; Regens C. S. Acc. Chem. Res. 2008, 41, 1486.
[3]
(a) Denmark S. E.; Sweis R. F. In Metal-Catalyzed Cross-Coup- ling Reactions and More, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2014, pp. 475-532.
[3]
(b) Sore H. F.; Galloway W. R. J. D.; Spring D. R. Chem. Soc. Rev. 2012, 41, 1845.
[3]
(c) Sivakumar S.; Aneeja T.; Anilkumar G. ARKIVOC 2023, 2022, 295.
[3]
(d) Komiyama T.; Minami Y.; Hiyama T. ACS Catal. 2017, 7, 631.
[4]
Manolikakes G. In Comprehensive Organic Synthesis II, 2 ed., Elsevier, Amsterdam, 2014, pp. 392-464.
[5]
Jana R.; Pathak T. P.; Sigman M. S. Chem. Rev. 2011, 111, 1417.
[6]
Denmark S. E.; Baird J. D. Chem.-Eur. J. 2006, 12, 4954.
[7]
(a) Hatanaka Y.; Hiyama T. Tetrahedron Lett. 1988, 29, 97.
[7]
(b) Hatanaka Y.; Hiyama T. Tetrahedron Lett. 1990, 31, 2719.
[7]
(c) Hiyama T.; Hatanaka Y. Pure Appl. Chem. 1994, 66, 1471.
[7]
(d) Matsuhashi H.; Kuroboshi M.; Hatanaka Y.; Hiyama T. Tetrahedron Lett. 1994, 35, 6507.
[7]
(e) Hayao M.; Satoshi A.; Kazunori H.; Yasuo H.; Atsunori M.; Tamejiro H. Bull. Chem. Soc. Jpn. 1997, 70, 437.
[7]
(f) Schweizer S. A.; Bach T. Synlett 2010, 2010, 81.
[8]
(a) Nakao Y.; Takeda M.; Matsumoto T.; Hiyama T. Angew. Chem., Int. Ed. 2010, 49, 4447.
[8]
(b) Itami K.; Mineno M.; Kamei T.; Yoshida J.-I. Org. Lett. 2002, 4, 3635.
[8]
(c) Lin K.; Wiles R. J.; Kelly C. B.; Davies G. H. M.; Molander G. A. ACS Catal. 2017, 7, 5129.
[9]
Denmark S. E.; Sweis R. F. Chem. Pharm. Bull. 2002, 50, 1531.
[10]
(a) Zhou Y.; Wang J.; Gu Z.; Wang S.; Zhu W.; Ace?a J. L.; Soloshonok V. A.; Izawa K.; Liu H. Chem. Rev. 2016, 116, 422.
[10]
(b) Meanwell N. A. J. Med. Chem. 2018, 61, 5822.
[10]
(c) Ogawa Y.; Tokunaga E.; Kobayashi O.; Hirai K.; Shibata N. iScience 2020, 23, 101467.
[10]
(d) Inoue M.; Sumii Y.; Shibata N. ACS Omega 2020, 5, 10633.
[10]
(e) Rong G.; Wang C.; Chen L.; Yan Y.; Cheng Y. Sci. Adv. 2020, 6, aaz1774.
[11]
(a) Jia H.; H?ring A. P.; Berger F.; Zhang L.; Ritter T. J. Am. Chem. Soc. 2021, 143, 7623.
[11]
(b) Qing F.-L.; Liu X.-Y.; Ma J.-A.; Shen Q.; Song Q.; Tang P. CCS Chem. 2022, 4, 2518.
[11]
(c) Chen D.; Yang W.; Yao Y.; Yang X.; Deng Y.; Yang D. Chin. J. Org. Chem. 2018, 38, 2571. (in Chinese)
[11]
(陈董涵, 杨文, 姚永祺, 杨新, 邓颖颍, 杨定乔, 有机化学, 2018, 38, 2571.)
[11]
(d) Chen D.; Jiang J.; Wan J.-P. Chin. J. Chem. 2022, 40, 2582.
[11]
(e) Ma R.; Deng Z.; Wang K.; Huang D.; Hu Y.; Lü X. Chin. J. Org. Chem. 2022, 42, 353. (in Chinese)
[11]
(马然松, 邓周斌, 王克虎, 黄丹凤, 胡雨来, 闾肖波, 有机化学, 2022, 42, 353.)
[12]
Liang T.; Neumann C. N.; Ritter T. Angew. Chem. Int. Ed. 2013, 52, 8214.
[13]
(a) Prakash G. K. S.; Krishnan H. S.; Jog P. V.; Iyer A. P.; Olah G. A. Org. Lett. 2012, 14, 1146.
[13]
(b) Egami H.; Sodeoka M. Angew. Chem., Int. Ed. 2014, 53, 8294.
[13]
(c) Choi S.; Kim Y. J.; Kim S. M.; Yang J. W.; Kim S. W.; Cho E. J. Nat. Commun. 2014, 5, 4881.
[13]
(d) Yu X.; Cohen S. M. J. Am. Chem. Soc. 2016, 138, 12320.
[13]
(e) Duan Y.; Lin J.-H.; Xiao J.-C.; Gu Y.-C. Org. Chem. Front. 2017, 4, 1917.
[13]
(f) Straathof N. J. W.; Cramer S. E.; Hessel V.; No?l T. Angew. Chem., Int. Ed. 2016, 55, 15549.
[14]
(a) Tan X.; Liu Z.; Shen H.; Zhang P.; Zhang Z.; Li C. J. Am. Chem. Soc. 2017, 139, 12430.
[14]
(b) Chen Y.; Ma G.; Gong H. Org. Lett. 2018, 20, 4677.
[14]
(c) Kautzky J. A.; Wang T.; Evans R. W.; MacMillan D. W. C. J. Am. Chem. Soc. 2018, 140, 6522.
[14]
(d) Kornfilt D. J. P.; MacMillan D. W. C. J. Am. Chem. Soc. 2019, 141, 6853.
[14]
(e) Zhao X.; MacMillan D. W. C. J. Am. Chem. Soc. 2020, 142, 19480.
[14]
(f) Cao Y.; Ahmadi R.; Poor Heravi M. R.; Issakhov A.; Ebadi A. G.; Vessally E. RSC Adv. 2021, 11, 39593.
[14]
(g) Intermaggio N. E.; Millet A.; Davis D. L.; MacMillan D. W. C. J. Am. Chem. Soc. 2022, 144, 11961.
[15]
(a) Chen Q.-Y.; Wu S.-W. J. Chem. Soc.,Chem. Commun. 1989, 705.
[15]
(b) Chen Q.-Y.; Duan J.-X. Tetrahedron Lett. 1993, 34, 4241.
[15]
(c) Sevenard D. V.; Kirsch P.; R?schenthaler G.-V.; Movchun V. N.; Kolomeitsev A. A. Synlett 2001, 379.
[15]
(d) Tyrra W.; Naumann D.; Quadt S.; Buslei S.; Yagupolskii Y. L.; Kremlev M. M. J. Fluorine Chem. 2007, 128, 813.
[16]
Xu J.; Xiao B.; Xie C.-Q.; Luo D.-F.; Liu L.; Fu Y. Angew. Chem., Int. Ed. 2012, 51, 12551.
[17]
Wang F.; Xu P.; Cong F.; Tang P. Chem. Sci. 2018, 9, 8836.
[18]
(a) Fu W. C.; Zheng B.; Zhao Q.; Chan W. T. K.; Kwong F. Y. Org. Lett. 2017, 19, 4335.
[18]
(b) Yang Q.; Choy P. Y.; Zhao Q.; Leung M. P.; Chan H. S.; So C. M.; Wong W.-T.; Kwong F. Y. J. Org. Chem. 2018, 83, 11369.
[18]
(c) Zhao Q.; Fu W. C.; Kwong F. Y. Angew. Chem. Int. Ed. 2018, 57, 3381.
[18]
(d) Zhao Q.; Choy P. Y.; Li L.; Kwong F. Y. Tetrahedron Lett. 2021, 62, 152670.
[18]
(e) Wong S. M.; Choy P. Y.; Zhao Q.; Yuen O. Y.; Yeung C. C.; So C. M.; Kwong F. Y. Organometallics 2021, 40, 2265.
[18]
(f) Zhao Q.; Yu L.; Zhang Y.-D.; Guo Y.-Q.; Chen M.; Ren Z.-H.; Guan Z.-H. Nat. Commun. 2023, 14, 2572.
[19]
(a) Yuen O. Y.; So C. M.; Man H. W.; Kwong F. Y. Chem.-Eur. J. 2016, 22, 6471.
[19]
(b) So C. M.; Lee H. W.; Lau C. P.; Kwong F. Y. Org. Lett. 2009, 11, 317.
[20]
Prakash G. K. S.; Krishnamurti R.; Olah G. A. J. Am. Chem. Soc. 1989, 111, 393.
[21]
Tse M. H.; Choy P. Y.; Kwong F. Y. Acc. Chem. Res. 2022, 55, 3688.
文章导航

/