一种用于次氯酸根实时高灵敏度检测的络合物基荧光探针
收稿日期: 2023-10-18
修回日期: 2023-11-23
网络出版日期: 2023-12-01
基金资助
国家自然科学基金(21502047); 湖北省自然科学基金(2022CFB779)
An Ensemble-Based Fluorescent Probe for Real-Time and High Sensitive Detection of Hypochlorite
Received date: 2023-10-18
Revised date: 2023-11-23
Online published: 2023-12-01
Supported by
National Natural Science Foundation of China(21502047); Natural Science Foundation of Hubei Province(2022CFB779)
程晓红 , 刘发龙 , 孙进博 , 张锐 . 一种用于次氯酸根实时高灵敏度检测的络合物基荧光探针[J]. 有机化学, 2024 , 44(4) : 1284 -1292 . DOI: 10.6023/cjoc202310014
A novel fluorescent probe TS1 for real-time monitoring of hypochlorite was reported. The introduction of Cu2+could lead to the formation of stable complex TS1-Cu and simultaneous remarkable fluorescence quenching. Next, “off-on” fluorescence changes of TS1-Cu were proceeded by the subsequent addition of hypochlorite, which induced the hydrolytic cleavage of the Schiff base in TS1 and the transformation to strongly fluorescent aldehyde. TS1-Cu could recognize hypochlorite through an instantaneous marked fluorescence enhancement with the detection limit as low as 120 nmol/L. Furthermore, the sensitive and rapid detection of hypochlorite with TS1-Cu for the practical application was also performed in commercial disinfectant samples.
| [1] | (a) Li G.; Ji D.; Zhang S.; Li J.; Li C.; Qiao R. Sens. Actuators, B 2017, 252, 127. |
| [1] | (b) Zhang P.; Wang Y.; Chen L.; Yin Y. Microchim. Acta 2017, 184, 3781. |
| [2] | (a) Steinbeck M. J.; Nesti L. J.; Sharkey P. F.; Parvizi J. J. Orthop. Res. 2007, 25, 1128. |
| [2] | (b) Chen X.; Tian X.; Shin I.; Yoon J. Chem. Soc. Rev. 2011, 40, 4783. |
| [2] | (c) Hwang J.; Choi M. G.; Bae J.; Chang S.-K. Org. Biomol. Chem. 2011, 9, 7011. |
| [3] | (a) Thiagarajan S.; Wu Z.; Chen S. J. Electroanal. Chem. 2011, 661, 322. |
| [3] | (b) Watanabe T.; Idehara T.; Yoshimura Y.; Nakazawa H. J. Chromatogr. A 1998, 796, 397. |
| [3] | (c) Marino D.; Ingle J. Anal. Chem. 1981, 53, 455. |
| [3] | (d) Pak Y. L.; Park S. J.; Wu D.; Cheon B. H.; Kim H. M.; Bouffffard J.; Yoon J. Y. Angew. Chem., Int. Ed. 2018, 130, 1583. |
| [4] | (a) Jiang Y.; Wu S.; Jin C.; Wang B.; Shen J. Sens. Actuators, B 2018, 265, 365. |
| [4] | (b) Zhan Z.; Liu R.; Chai L.; Li Q.; Zhang K.; Lv Y. Anal. Chem. 2017, 89, 9544. |
| [4] | (c) Koide Y.; Urano Y.; Hanaoka K.; Terai T.; Nagano T. J. Am. Chem. Soc. 2011, 133, 5680. |
| [4] | (d) Xing P.; Feng Y.; Niu Y.; Li Q.; Zhang Z.; Dong L.; Wang C. Chem.-Eur. J. 2018, 24, 5748. |
| [4] | (e) Jiao X.; Xiao Y.; Li Y.; Liang M.; Xie X.; Wang X.; Tang B. Anal. Chem. 2018, 90, 7510. |
| [4] | (f) Lin Y.; Wang L.; Agrawalla B. K.; Park S. J.; Zhu H.; Sivaraman B.; Peng J.; Xu Q.; Chang Y. J. Am. Chem. Soc. 2015, 137, 5930. |
| [4] | (g) Han X.; Tian C.; Jiang J.; Yuan M.; Chen S.; Xu J.; Li T.; Wang J. Talanta 2018, 186, 65. |
| [5] | (a) Mu Y.; Zhang C.; Gao Z.; Zhang X.; Lu Q.; Yao J.; Xing S. Synth. Met. 2020, 262, 116334. |
| [5] | (b) Chowdhury S.; Rooj B.; Dutta A.; Mandal U. J. Fluoresc. 2018, 28, 999. |
| [5] | (c) Abdurahman A.; Wang L.; Zhang Z.; Feng Y.; Zhao Y.; Zhang M. Dyes Pigm. 2020, 174, 108050. |
| [5] | (d) Chen H.; Yang P.; Li Y.; Zhang L.; Ding F.; He X.; Shen J. Spectrochim. Acta, Part A 2020, 224, 117384. |
| [6] | (a) Mishra A.; Ma C.-Q.; Baüerle P. Chem. Rev. 2009, 109, 1141. |
| [6] | (b) Liu Z.; Yang Z.; Chen S.; Liu Y.; Sheng L.; Tian Z.; Huang D.; Xu H. Microchem. J. 2020, 156, 104809. |
| [6] | (c) Samanta S.; Huang M.; Lin F.; Das P.; Chen B.; Yan W.; Chen J.-J.; Ji K.; Liu L.; Qu J.; Yang Z. Anal. Chem. 2020, 92, 1541. |
| [6] | (d) Mishra A.; Ma C.-Q.; B?uerle P. Chem. Rev. 2009, 109, 1141. |
| [7] | (a) Cheng X.; Li S.; Jia H.; Zhong A.; Zhong C.; Feng J.; Qin J.; Li Z. Chem.-Eur. J. 2012, 18, 1691. |
| [7] | (b) Cheng X.; He P.; Zhong Z.; Liang G. Luminescence 2016, 31, 1372. |
| [8] | (a) Zhang R.; Song B.; Yuan J. Trends Anal. Chem. 2018, 99, 1. |
| [8] | (b) Liu C.; Jiao X.; He S.; Zhao L.; Zeng X. Talanta 2017, 174, 234. |
| [8] | (c) Shi L.; Yang S.; Hong H.; Li Y.; Yu H.; Shao G.; Zhang K.; Gong S. Anal. Chim. Acta 2020, 1094, 122. |
| [8] | (d) Wei H.; Zeng R.; Wang S.; Zhang C.; Chen S.; Zhang P.; Chen J. Mater. Chem. Front. 2020, 4, 862. |
| [8] | (e) Ren J.; Zhang P.; Liu H.; Zhang C.; Gao Y.; Cui J.; Chen J. Sens. Actuators, B 2020, 304, 127299. |
| [8] | (f) Zhang P.; Wang H.; Hong Y.; Yu M.; Zeng R.; Long Y.; Chen J. Biosens. Bioelectron. 2017, 99, 318. |
| [8] | (g) Huang Y.; Zhang P.; Gao M.; Zeng F.; Qin A.; Wu S.; Tang B. Chem. Commun. 2016, 52, 7288. |
| [9] | (a) Ma P.; Zhang B.; Diao Q.; Li L.; Sun Y.; Wang X.; Song D. Sens. Actuators, B 2016, 233, 639. |
| [9] | (b) Zhua Y.; Wang K.; Wu X.; Sun Y.; Gong X.; Cao D.; Guan R.; Liu Z. Talanta 2020, 209, 120548. |
| [10] | (a) Wu M.; You J.; Yu Y.; Wu W. Chin. J. Org. Chem. 2022, 42, 2559. (in Chinese) |
| [10] | (吴绵园, 由君, 喻艳超, 武文菊, 有机化学, 2022, 42, 2559.) |
| [10] | (b) Wu M.; Yu Y.; Liu Y.; You J.; Wu W.; Liu B. Chin. J. Org. Chem. 2022, 42, 803. (in Chinese) |
| [10] | (吴绵园, 喻艳超, 刘洋, 由君, 武文菊, 刘波, 有机化学, 2022, 42, 803.) |
| [11] | (a) Ressalan S.; Iyer C. S. P. J. Lumin. 2005, 111, 121. |
| [11] | (b) Jung H. S.; Kwon P. S.; Lee J. W.; Kim J. II; Hong C. S.; Kim J. W.; Yan S.; Lee J. Y.; Lee J. H.; Joo T.; Kim J. S. J. Am. Chem. Soc. 2009, 131, 2008. |
| [12] | Barra M.; Bohne C.; Scaiano J. C. J. Am. Chem. Soc. 1990, 112, 8075. |
| [13] | Taki M.; Iyoshi S.; Ojida A.; Hamachi I.; Yamamoto Y. J. Am. Chem. Soc. 2010, 132, 5938. |
| [14] | Liu L.; Dong X.; Xiao Y.; Lian W.; Liu Z. Analyst 2011, 136, 2139. |
| [15] | Duan C.; Won M.; Verwilst P.; Xu J.; Kim H. S.; Zeng L.; Kim. J. S. Anal. Chem. 2019, 91, 4172. |
| [16] | Nguyen V.-N.; Heo S.; Kim S.; Swamy K. M. K.; Park J. H. S.; Yoon J. Sens. Actuators, B 2020, 317, 128213. |
| [17] | Yuan L.; Lin W.; Song J.; Yang Y. Chem. Commun. 2011, 47, 12691. |
| [18] | Wang X.; Song F.; Peng X. Dyes Pigm. 2016, 125, 89. |
| [19] | Long L.; Wu Y.; Wang L.; Gong A.; Hu F.; Zhang C. Chem. Commun. 2015, 51,10435. |
| [20] | Yang Y.; Qiu F.; Wang Y.; Feng Y.; Song X.; Tang X.; Zhang G.; Liu W. Sens. Actuators, B 2018, 260, 832. |
| [21] | Tang L.; Li P.; Han Y.; Yang G.; Xin H.; Zhao S.; Guan R.; Liu Z.; Cao D. J. Photochem. Photobiol. A 2023, 438, 114511. |
| [22] | Das S.; Aich K.; Patra L.; Ghoshal K.; Gharami S.; Bhatta- charyya M.; Mondal T. K. Tetrahedron Lett. 2018, 59, 1130. |
| [23] | Zhang Y.; Ma L.; Tang C.; Pan S.; Shi D.; Wang S.; Li M.; Guo Y. J. Mater. Chem. B 2018, 6, 725. |
| [24] | Delley B. J. Chem. Phys. 2000, 113, 7756. |
| [25] | He J.; Xie Z.; Xue S.; Liu Y.; Shi W.; Chen X. Chin. J. Org. Chem. 2021, 41, 2839. (in Chinese) |
| [25] | (何佳伟, 解正峰, 薛松松, 刘宇程, 石伟, 陈鑫, 有机化学, 2021, 41, 2839.) |
| [26] | Huang F.; Chen K.-S.; Yip H.-L.; Hau S. K.; Acton O.; Zhang Y.; Luo J. D.; Jen A. K.-Y. J. Am. Chem. Soc. 2009, 131, 13886. |
| [27] | Ma P.; Zhang B.; Diao Q.; Li L.; Sun Y.; Wang X.; Song D. Sens. Actuators, B 2016, 233, 639. |
| [28] | Chen G.; Song F.; Wang J.; Yang Z.; Sun S.; Fan J.; Qiang X.; Wang X.; Dou B.; Peng X. J. Chem. Commun. 2012, 48, 2949. |
| [29] | Williams A. T. R.; Winfield S. A.; Miller J. N. Analyst 1983, 108, 1067. |
/
| 〈 |
|
〉 |