研究论文

一种用于次氯酸根实时高灵敏度检测的络合物基荧光探针

  • 程晓红 ,
  • 刘发龙 ,
  • 孙进博 ,
  • 张锐
展开
  • a 湖北文理学院 低维光电材料与器件湖北省重点实验室 湖北襄阳 441053
    b 湖北航天化学技术研究所 湖北襄阳 441053
    c 湖北文理学院化学工程学院 湖北襄阳 441053

收稿日期: 2023-10-18

  修回日期: 2023-11-23

  网络出版日期: 2023-12-01

基金资助

国家自然科学基金(21502047); 湖北省自然科学基金(2022CFB779)

An Ensemble-Based Fluorescent Probe for Real-Time and High Sensitive Detection of Hypochlorite

  • Xiaohong Cheng ,
  • Falong Liu ,
  • Jinbo Sun ,
  • Rui Zhang
Expand
  • a Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Hubei University of Arts and Science, Xiangyang, Hubei 441053
    b Hubei Institute of Aerospace Chemical Technology, Xiangyang, Hubei 441053
    c School of Chemical Engineering, Hubei University of Arts and Science, Xiangyang, Hubei 441053

Received date: 2023-10-18

  Revised date: 2023-11-23

  Online published: 2023-12-01

Supported by

National Natural Science Foundation of China(21502047); Natural Science Foundation of Hubei Province(2022CFB779)

摘要

报道了一个实时检测次氯酸根阴离子的荧光探针TS1. 首先, 铜离子的引入可与化合物TS1形成稳定的络合物TS1-Cu, 导致溶液荧光被极大地猝灭. 然后, 继续加入次氯酸根, 由于次氯酸根的强氧化性, 可诱导TS1中席夫碱发生水解反应, 并转化为醛类化合物, 导致溶液荧光明显增强. 因此, 络合物TS1-Cu可实现对次氯酸根的快速实时检测, 且检测限低至120 nmol/L. 重要的是, 该络合物体系可成功地应用于商业消毒剂样品中次氯酸根的实际检测.

本文引用格式

程晓红 , 刘发龙 , 孙进博 , 张锐 . 一种用于次氯酸根实时高灵敏度检测的络合物基荧光探针[J]. 有机化学, 2024 , 44(4) : 1284 -1292 . DOI: 10.6023/cjoc202310014

Abstract

A novel fluorescent probe TS1 for real-time monitoring of hypochlorite was reported. The introduction of Cu2+could lead to the formation of stable complex TS1-Cu and simultaneous remarkable fluorescence quenching. Next, “off-on” fluorescence changes of TS1-Cu were proceeded by the subsequent addition of hypochlorite, which induced the hydrolytic cleavage of the Schiff base in TS1 and the transformation to strongly fluorescent aldehyde. TS1-Cu could recognize hypochlorite through an instantaneous marked fluorescence enhancement with the detection limit as low as 120 nmol/L. Furthermore, the sensitive and rapid detection of hypochlorite with TS1-Cu for the practical application was also performed in commercial disinfectant samples.

参考文献

[1]
(a) Li G.; Ji D.; Zhang S.; Li J.; Li C.; Qiao R. Sens. Actuators, B 2017, 252, 127.
[1]
(b) Zhang P.; Wang Y.; Chen L.; Yin Y. Microchim. Acta 2017, 184, 3781.
[2]
(a) Steinbeck M. J.; Nesti L. J.; Sharkey P. F.; Parvizi J. J. Orthop. Res. 2007, 25, 1128.
[2]
(b) Chen X.; Tian X.; Shin I.; Yoon J. Chem. Soc. Rev. 2011, 40, 4783.
[2]
(c) Hwang J.; Choi M. G.; Bae J.; Chang S.-K. Org. Biomol. Chem. 2011, 9, 7011.
[3]
(a) Thiagarajan S.; Wu Z.; Chen S. J. Electroanal. Chem. 2011, 661, 322.
[3]
(b) Watanabe T.; Idehara T.; Yoshimura Y.; Nakazawa H. J. Chromatogr. A 1998, 796, 397.
[3]
(c) Marino D.; Ingle J. Anal. Chem. 1981, 53, 455.
[3]
(d) Pak Y. L.; Park S. J.; Wu D.; Cheon B. H.; Kim H. M.; Bouffffard J.; Yoon J. Y. Angew. Chem., Int. Ed. 2018, 130, 1583.
[4]
(a) Jiang Y.; Wu S.; Jin C.; Wang B.; Shen J. Sens. Actuators, B 2018, 265, 365.
[4]
(b) Zhan Z.; Liu R.; Chai L.; Li Q.; Zhang K.; Lv Y. Anal. Chem. 2017, 89, 9544.
[4]
(c) Koide Y.; Urano Y.; Hanaoka K.; Terai T.; Nagano T. J. Am. Chem. Soc. 2011, 133, 5680.
[4]
(d) Xing P.; Feng Y.; Niu Y.; Li Q.; Zhang Z.; Dong L.; Wang C. Chem.-Eur. J. 2018, 24, 5748.
[4]
(e) Jiao X.; Xiao Y.; Li Y.; Liang M.; Xie X.; Wang X.; Tang B. Anal. Chem. 2018, 90, 7510.
[4]
(f) Lin Y.; Wang L.; Agrawalla B. K.; Park S. J.; Zhu H.; Sivaraman B.; Peng J.; Xu Q.; Chang Y. J. Am. Chem. Soc. 2015, 137, 5930.
[4]
(g) Han X.; Tian C.; Jiang J.; Yuan M.; Chen S.; Xu J.; Li T.; Wang J. Talanta 2018, 186, 65.
[5]
(a) Mu Y.; Zhang C.; Gao Z.; Zhang X.; Lu Q.; Yao J.; Xing S. Synth. Met. 2020, 262, 116334.
[5]
(b) Chowdhury S.; Rooj B.; Dutta A.; Mandal U. J. Fluoresc. 2018, 28, 999.
[5]
(c) Abdurahman A.; Wang L.; Zhang Z.; Feng Y.; Zhao Y.; Zhang M. Dyes Pigm. 2020, 174, 108050.
[5]
(d) Chen H.; Yang P.; Li Y.; Zhang L.; Ding F.; He X.; Shen J. Spectrochim. Acta, Part A 2020, 224, 117384.
[6]
(a) Mishra A.; Ma C.-Q.; Baüerle P. Chem. Rev. 2009, 109, 1141.
[6]
(b) Liu Z.; Yang Z.; Chen S.; Liu Y.; Sheng L.; Tian Z.; Huang D.; Xu H. Microchem. J. 2020, 156, 104809.
[6]
(c) Samanta S.; Huang M.; Lin F.; Das P.; Chen B.; Yan W.; Chen J.-J.; Ji K.; Liu L.; Qu J.; Yang Z. Anal. Chem. 2020, 92, 1541.
[6]
(d) Mishra A.; Ma C.-Q.; B?uerle P. Chem. Rev. 2009, 109, 1141.
[7]
(a) Cheng X.; Li S.; Jia H.; Zhong A.; Zhong C.; Feng J.; Qin J.; Li Z. Chem.-Eur. J. 2012, 18, 1691.
[7]
(b) Cheng X.; He P.; Zhong Z.; Liang G. Luminescence 2016, 31, 1372.
[8]
(a) Zhang R.; Song B.; Yuan J. Trends Anal. Chem. 2018, 99, 1.
[8]
(b) Liu C.; Jiao X.; He S.; Zhao L.; Zeng X. Talanta 2017, 174, 234.
[8]
(c) Shi L.; Yang S.; Hong H.; Li Y.; Yu H.; Shao G.; Zhang K.; Gong S. Anal. Chim. Acta 2020, 1094, 122.
[8]
(d) Wei H.; Zeng R.; Wang S.; Zhang C.; Chen S.; Zhang P.; Chen J. Mater. Chem. Front. 2020, 4, 862.
[8]
(e) Ren J.; Zhang P.; Liu H.; Zhang C.; Gao Y.; Cui J.; Chen J. Sens. Actuators, B 2020, 304, 127299.
[8]
(f) Zhang P.; Wang H.; Hong Y.; Yu M.; Zeng R.; Long Y.; Chen J. Biosens. Bioelectron. 2017, 99, 318.
[8]
(g) Huang Y.; Zhang P.; Gao M.; Zeng F.; Qin A.; Wu S.; Tang B. Chem. Commun. 2016, 52, 7288.
[9]
(a) Ma P.; Zhang B.; Diao Q.; Li L.; Sun Y.; Wang X.; Song D. Sens. Actuators, B 2016, 233, 639.
[9]
(b) Zhua Y.; Wang K.; Wu X.; Sun Y.; Gong X.; Cao D.; Guan R.; Liu Z. Talanta 2020, 209, 120548.
[10]
(a) Wu M.; You J.; Yu Y.; Wu W. Chin. J. Org. Chem. 2022, 42, 2559. (in Chinese)
[10]
(吴绵园, 由君, 喻艳超, 武文菊, 有机化学, 2022, 42, 2559.)
[10]
(b) Wu M.; Yu Y.; Liu Y.; You J.; Wu W.; Liu B. Chin. J. Org. Chem. 2022, 42, 803. (in Chinese)
[10]
(吴绵园, 喻艳超, 刘洋, 由君, 武文菊, 刘波, 有机化学, 2022, 42, 803.)
[11]
(a) Ressalan S.; Iyer C. S. P. J. Lumin. 2005, 111, 121.
[11]
(b) Jung H. S.; Kwon P. S.; Lee J. W.; Kim J. II; Hong C. S.; Kim J. W.; Yan S.; Lee J. Y.; Lee J. H.; Joo T.; Kim J. S. J. Am. Chem. Soc. 2009, 131, 2008.
[12]
Barra M.; Bohne C.; Scaiano J. C. J. Am. Chem. Soc. 1990, 112, 8075.
[13]
Taki M.; Iyoshi S.; Ojida A.; Hamachi I.; Yamamoto Y. J. Am. Chem. Soc. 2010, 132, 5938.
[14]
Liu L.; Dong X.; Xiao Y.; Lian W.; Liu Z. Analyst 2011, 136, 2139.
[15]
Duan C.; Won M.; Verwilst P.; Xu J.; Kim H. S.; Zeng L.; Kim. J. S. Anal. Chem. 2019, 91, 4172.
[16]
Nguyen V.-N.; Heo S.; Kim S.; Swamy K. M. K.; Park J. H. S.; Yoon J. Sens. Actuators, B 2020, 317, 128213.
[17]
Yuan L.; Lin W.; Song J.; Yang Y. Chem. Commun. 2011, 47, 12691.
[18]
Wang X.; Song F.; Peng X. Dyes Pigm. 2016, 125, 89.
[19]
Long L.; Wu Y.; Wang L.; Gong A.; Hu F.; Zhang C. Chem. Commun. 2015, 51,10435.
[20]
Yang Y.; Qiu F.; Wang Y.; Feng Y.; Song X.; Tang X.; Zhang G.; Liu W. Sens. Actuators, B 2018, 260, 832.
[21]
Tang L.; Li P.; Han Y.; Yang G.; Xin H.; Zhao S.; Guan R.; Liu Z.; Cao D. J. Photochem. Photobiol. A 2023, 438, 114511.
[22]
Das S.; Aich K.; Patra L.; Ghoshal K.; Gharami S.; Bhatta- charyya M.; Mondal T. K. Tetrahedron Lett. 2018, 59, 1130.
[23]
Zhang Y.; Ma L.; Tang C.; Pan S.; Shi D.; Wang S.; Li M.; Guo Y. J. Mater. Chem. B 2018, 6, 725.
[24]
Delley B. J. Chem. Phys. 2000, 113, 7756.
[25]
He J.; Xie Z.; Xue S.; Liu Y.; Shi W.; Chen X. Chin. J. Org. Chem. 2021, 41, 2839. (in Chinese)
[25]
(何佳伟, 解正峰, 薛松松, 刘宇程, 石伟, 陈鑫, 有机化学, 2021, 41, 2839.)
[26]
Huang F.; Chen K.-S.; Yip H.-L.; Hau S. K.; Acton O.; Zhang Y.; Luo J. D.; Jen A. K.-Y. J. Am. Chem. Soc. 2009, 131, 13886.
[27]
Ma P.; Zhang B.; Diao Q.; Li L.; Sun Y.; Wang X.; Song D. Sens. Actuators, B 2016, 233, 639.
[28]
Chen G.; Song F.; Wang J.; Yang Z.; Sun S.; Fan J.; Qiang X.; Wang X.; Dou B.; Peng X. J. Chem. Commun. 2012, 48, 2949.
[29]
Williams A. T. R.; Winfield S. A.; Miller J. N. Analyst 1983, 108, 1067.
文章导航

/