综述与进展

电化学修饰氨基酸和多肽类化合物的研究进展

  • 方新月 ,
  • 黄雅雯 ,
  • 胡新伟 ,
  • 阮志雄
展开
  • 广州医科大学药学院 广州 511436

收稿日期: 2023-10-24

  修回日期: 2023-11-21

  网络出版日期: 2023-12-01

基金资助

国家自然科学基金(22271067); 国家自然科学基金(22201052); 广东省普通高校重点(2022ZDZX2051)

Recent Progress in Electrochemical Modification of Amino Acids and Peptides

  • Xinyue Fang ,
  • Yawen Huang ,
  • Xinwei Hu ,
  • Zhixiong Ruan
Expand
  • School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436

Received date: 2023-10-24

  Revised date: 2023-11-21

  Online published: 2023-12-01

Supported by

National Natural Science Foundation of China(22271067); National Natural Science Foundation of China(22201052); Key-Area Research Project of Guangdong Provincial Department of Education(2022ZDZX2051)

摘要

随着多肽类化合物在治疗肿瘤疾病和生物医学应用中重要性的与日俱增, 开发和构建多肽分子的新方法已成为有机合成化学家的研究热点. 近年来有机电化学作为一种绿色高效的反应工具, 被逐步运用于有机小分子合成领域, 其温和可控的特征适合解决现有生物偶联策略存在的化学和区域选择性问题, 为多肽分子的选择性修饰提供了一种重要的合成手段. 综述了近五年来利用电化学手段修饰氨基酸和多肽类化合物的反应, 阐述了电化学合成技术的优势及其在开发新型生物相容性方法中的适用性.

本文引用格式

方新月 , 黄雅雯 , 胡新伟 , 阮志雄 . 电化学修饰氨基酸和多肽类化合物的研究进展[J]. 有机化学, 2024 , 44(3) : 903 -926 . DOI: 10.6023/cjoc202310024

Abstract

With the increasing importance of peptides in the treatment of oncological diseases and biomedical applications, the development and construction of new methods for peptide molecules have become a hot research topic for organic synthetic chemists. As a green and efficient reaction tool, organic electrochemistry has been gradually utilized in the field of organic small molecule synthesis in recent years, and its mild and controllable features are suitable for solving the chemo- and regioselectivity problems of the existing bioconjugation strategies, which provide an important synthetic means for the selective modification of peptide molecules. The electrochemical approaches to amino acids and peptides modification developed in the last five years are reviewed, and the distinct advantages of electrochemical synthesis techniques and its applicability in the development of novel biocompatible methodologies are described.

参考文献

[1]
Lau J. L.; Dunn M. K. Bioorg. Med. Chem. 2018, 26, 2700.
[2]
(a) Craik D. J.; Fairlie D. P.; Liras S.; Price D. Chem. Biol. Drug Des. 2013, 81, 136.
[2]
(b) Cooper B. M.; Iegre J.; O'Donovan D. H.; Halvarsson M. ?.; Spring D. R. Chem. Soc. Rev. 2021, 50, 1480.
[2]
(c) Muttenthaler M.; King G. F.; Adams D. J.; Alewood P. F. Nat. Rev. Drug Discov. 2021, 20, 309.
[2]
(d) McCarver S. J.; Qiao J. X.; Carpenter J.; Borzilleri R. M.; Poss M. A.; Eastgate M. D.; Miller M. M.; MacMillan D. W. C. Angew. Chem., Int. Ed. 2017, 56, 728.
[3]
Fosgerau K.; Hoffmann T. Drug Discovery Today 2015, 20, 122.
[4]
(a) Ball Z. T. Acc. Chem. Res. 2013, 46, 560.
[4]
(b) Yi L.; Sun H.; Wu Y. W.; Triola G.; Waldmann H.; Goody R. S. Angew. Chem., Int. Ed. 2010, 122, 9607.
[4]
(c) deGruyter J. N.; Malins L. R.; Baran P. S. Biochemistry 2017, 56, 3863.
[4]
(d) Cravatt B. F.; Wright A. T.; Kozarich J. W. Annu. Rev. Biochem. 2008, 77, 383.
[4]
(e) Luther A.; Bisang C.; Obrecht D. Bioorg. Med. Chem. 2018, 26, 2850.
[4]
(f) Bai Z.; Wang H. Synlett 2020, 31, 199.
[4]
(g) Brimble M. A.; Zhang S.;Rodriguez, L. M. M. D. L.; Li, F. F. Chem. Sci. 2023, 14, 7782.
[4]
(h) Budisa N.; V?ller J.; Koksch B.; Acevedo-Rocha C.; Kubyshkin V.; Agostini F. Angew. Chem., Int. Ed. 2017, 56, 9680.
[4]
(i) Chow H. Y.; Zhang Y.; Matheson E.; Li X. Chem. Rev. 2019, 119, 9971.
[4]
(j) King T. A.; Kandemir J. M.; Walsh S. J.; Spring D. R. Chem. Soc. Rev. 2021, 50, 39.
[4]
(k) Liu J.; Wang P.; Yan Z.; Yan J.; Kenry; Zhu Q. ChemBioChem 2021, 22, 2762.
[4]
(l) Mondal S.; Chowdhury S. Adv. Synth. Catal. 2018, 360, 1884.
[5]
Bottecchia C.; No?l T. Chem.-Eur. J. 2018, 25, 26.
[6]
Noisier A. F.; Brimble M. A. Chem. Rev. 2014, 114, 8775.
[7]
Wang W.; Lorion M. M.; Shah J.; Kapdi A. R.; Ackermann L. Angew. Chem., Int. Ed. 2018, 57, 14700.
[8]
Tong H.-R.; Li B.; Li G.; He G.; Chen G. CCS Chem. 2021, 3, 1797.
[9]
Meyer T. H.; Choi I.; Tian C.; Ackermann L. Chem 2020, 6, 2484.
[10]
Siu J. C.; Fu N.; Lin S. Acc. Chem. Res. 2020, 53, 547.
[11]
Yamamoto K.; Kuriyama M.; Onomura O. Acc. Chem. Res. 2019, 53, 105.
[12]
Ang N. W.; Oliveira J. C.; Ackermann L. Angew. Chem., Int. Ed. 2020, 59, 12842.
[13]
Rosen B.; Werner E. J. Am. Chem. Soc. 2014, 136, 5571.
[14]
Mackay A. S.; Payne R. J.; Malins L. R. J. Am. Chem. Soc. 2021, 144, 23.
[15]
Brabec V.; Mornstein V. Biophys. Chem. 1980, 12, 159.
[16]
(a) Brunelle P.; Rauk A. J. Phys. Chem. 2004, 108, 11032.
[16]
(b) Harriman A. J. Phys. Chem. 1987, 91, 6102.
[16]
(c) Jocelyn P. Eur. J. Biochem. 1967, 2, 327.
[16]
(d) Navaratnam S.; Parsons B. J. Chem. Soc., Faraday Trans. 1998, 94, 2577.
[16]
(e) Wilson G. S.; Glass R. S. J. Inorg. Biochem. 1994, 55, 87.
[17]
Alvarez-Dorta D.; Thobie-Gautier C.; Croyal M.; Bouzelha M.; Mével M.; Deniaud D.; Boujtita M.; Gouin S. G. J. Am. Chem. Soc. 2018, 140, 17120.
[18]
Ban H.; Gavrilyuk J.; Barbas III C. F. J. Am. Chem. Soc. 2010, 132, 1523.
[19]
Ban H.; Nagano M.; Gavrilyuk J.; Hakamata W.; Inokuma T.; Barbas III C. F. Bioconjugate Chem. 2013, 24, 520.
[20]
Jessica F.; Corentin W.; Sylvestre D.; Christian L.; André L. RSC Adv. 2013, 3, 24936.
[21]
(a) Nilo A.; Allan M.; Brogioni B.; Proietti D.; Cattaneo V.; Crotti S.; Sokup S.; Zhai H.; Margarit I.; Berti F. Bioconjugate Chem. 2014, 25, 2105.
[21]
(b) Hu Q.-Y.; Allan M.; Adamo R.; Quinn D.; Zhai H.; Wu G.; Clark K.; Zhou J.; Ortiz S.; Wang B. Chem. Sci. 2013, 4, 3827.
[22]
Bauer D. M.; Ahmed I.; Vigovskaya A.; Fruk L. Bioconjugate Chem. 2013, 24, 1094.
[23]
Madl C. M.; Heilshorn S. C. Bioconjugate Chem. 2017, 28, 724.
[24]
Cui L.; Ma Y.; Li M.; Wei Z.; Huan Y.; Li H.; Fei Q.; Zheng L. Anal. Chem. 2021, 93, 4434.
[25]
Sato, S.; Matsumura, M.; Kadonosono, T.; Abe, S.; Ueno, T.; Ueda, H.; Nakamura, H. Bioconjugate Chem. 2020, 31, 1417.
[26]
Depienne S.; Alvarez-Dorta D.; Croyal M.; Temgoua R. C. T.; Charlier C.; Deniaud D.; Mével M.; Boujtita M.; Gouin S. G. Chem. Sci. 2021, 12, 15374.
[27]
Song C.; Liu K.; Wang Z.; Ding B.; Wang S.; Weng Y.; Chiang C.-W.; Lei A. Chem. Sci. 2019, 10, 7982.
[28]
Stangier M.; Messinis A. M.; Oliveira J. C. A.; Yu H.; Ackermann L. Nat. Commun. 2021, 12, 4736.
[29]
Hou X.; Kaplaneris N.; Yuan B.; Frey J.; Ohyama T.; Messinis A. M.; Ackermann L. Chem. Sci. 2022, 13, 3461.
[30]
You S.; Wang R.; Ma C.; Lu C.; Yang G.; Liu L.; Weng Y.; Gao M. Org. Chem. Front. 2023, 10, 4606.
[31]
Toyama E.; Maruyama K.; Sugai T.; Kondo M.; Masaoka S.; Saitoh T.; Oisaki K.; Kanai M. 2019, 10.26434/ chemrxiv.7795484.v1.
[32]
Seki Y.; Ishiyama T.; Sasaki D.; Abe J.; Sohma Y.; Oisaki K.; Kanai M. J. Am. Chem. Soc. 2016, 138, 10798.
[33]
Wu J.; Abou-Hamdan H.; Guillot R.; Kouklovsky C.; Vincent G. Chem. Commun. 2020, 56, 1713.
[34]
Weng Y.; Xu X.; Chen H.; Zhang Y.; Zhuo X. Angew. Chem., Int. Ed. 2022, 61, e202206308.
[35]
Qiu Y.; Scheremetjew A.; Finger L. H.; Ackermann L. Chem.- Eur. J. 2020, 26, 3241.
[36]
Chen H. C.; Wan C.; Shih W. H.; Kao C. Y.; Jiang H.; Weng Y.; Chiang C. W. Asian J. Org. Chem. 2022, 12, e202200647.
[37]
Kawamata Y.; Vantourout J. C.; Hickey D. P.; Bai P.; Chen L.; Hou Q.; Qiao W.; Barman K.; Edwards M. A.; Garrido-Castro A. F.; deGruyter J. N.; Nakamura H.; Knouse K.; Qin C.; Clay K. J.; Bao D.; Li C.; Starr J. T.; Garcia-Irizarry C.; Sach N.; White H. S.; Neurock M.; Minteer S. D.; Baran P. S. J. Am. Chem. Soc. 2019, 141, 6392.
[38]
Ma Y.; Hong J.; Yao X.; Liu C.; Zhang L.; Fu Y.; Sun M.; Cheng R.; Li Z.; Ye J. Org. Lett. 2021, 23, 9387.
[39]
Novaes L. F. T.; Ho J. S. K.; Mao K.; Liu K.; Tanwar M.; Neurock M.; Villemure E.; Terrett J. A.; Lin S. J. Am. Chem. Soc. 2022, 144, 1187.
[40]
Lamb C. M. G.; Shi J.; Wilden J. D.; Macmillan D. Org. Biomol. Chem. 2022, 20, 7343.
[41]
Mackay A. S.; Maxwell J. W.; Bedding M. J.; Kulkarni S. S.; Byrne S. A.; Kambanis L.; Popescu M. V.; Paton R. S.; Malins L. R.; Ashhurst A. S.; Corcilius L.; Payne R. J. Angew. Chem.,Int. Ed. 2023, e202313037.
[42]
You S.; Ruan M.; Lu C.; Liu L.; Weng Y.; Yang G.; Wang S.; Alhumade H.; Lei A.; Gao M. Chem. Sci. 2022, 13, 2310.
[43]
Liu L.; Xu Z.; Liu T.; Xu C.; Zhang W.; Hua X.; Ling F.; Zhong W. J. Org. Chem. 2022, 87, 11379.
[44]
Wang R.; Wang J.; Zhang Y.; Wang B.; Xia Y.; Xue F.; Jin W.; Liu C. Adv. Synth. Catal. 2023, 365, 900.
[45]
Kawamata Y.; Hayashi K.; Carlson E.; Shaji S.; Waldmann D.; Simmons B. J.; Edwards J. T.; Zapf C. W.; Saito M.; Baran P. S. J. Am. Chem. Soc. 2021, 143, 16580.
[46]
Zeng S.; Fang S.; Cai H.; Wang D.; Liu W.; Hu X.; Sun P.; Ruan Z. Chem. Asian J. 2022, 17, e202200762.
[47]
Qiu Y.; Stangier M.; Meyer T. H.; Oliveira J. C. A.; Ackermann L. Angew. Chem., Int. Ed. 2018, 57, 14179.
[48]
Feng T.; Wang S.; Liu Y.; Liu S.; Qiu Y. Angew. Chem., Int. Ed. 2021, 61, e202115178.
[49]
Li P.; Guo C.; Wang S.; Ma D.; Feng T.; Wang Y.; Qiu Y. Nat. Commun. 2022, 13, 3774.
[50]
Wang Y.; Tang S.; Yang G.; Wang S.; Ma D.; Qiu Y. Angew. Chem., Int. Ed. 2022, 61, e202207746.
[51]
Liang H.; Julaiti Y.; Zhao C.-G.; Xie J. Nat. Synth. 2023, 2, 338.
[52]
Huang H.; Lambert T. H. Angew. Chem., Int. Ed. 2021, 60, 11163.
[53]
Huang H.; Lambert T. H. J. Am. Chem. Soc. 2021, 143, 7247.
[54]
Klocke E.; Matzeit A.; Gockeln M.; Sch?fer H. J. Chem. Ber. 1993, 126, 1623.
[55]
Shao X.; Zheng Y.; Tian L.; Martín-Torres I.; Echavarren A. M.; Wang Y. Org. Lett. 2019, 21, 9262.
[56]
Chen X.; Luo X.; Peng X.; Guo J.; Zai J.; Wang P. Chem. Eur. J. 2020, 26, 3226.
[57]
Barton L. M.; Chen L.; Blackmond D. G.; Baran P. S. Proc. Natl. Acad. Sci. 2021, 118, e2109408118.
[58]
Qin T.; Malins L. R.; Edwards J. T.; Merchant R. R.; Novak A. J.; Zhong J. Z.; Mills R. B.; Yan M.; Yuan C.; Eastgate M. D. Angew. Chem., Int. Ed. 2017, 56, 260.
[59]
McCarver S. J.; Qiao J. X.; Carpenter J.; Borzilleri R. M.; Poss M. A.; Eastgate M. D.; Miller M. M.; MacMillan D. W. Angew. Chem., Int. Ed. 2017, 129, 746.
[60]
K?ckinger M.; Hanselmann P.; Roberge D. M.; Geotti-Bianchini P.; Kappe C. O.; Cantillo D. Green Chem. 2021, 23, 2382.
[61]
Renaud P.; Seebach D. Angew. Chem.,Int. Ed. Engl. 1986, 25, 843.
[62]
Lin Y.; Malins L. R. Chem. Sci. 2020, 11, 10752.
[63]
Lin Y.; Malins L. R. J. Am. Chem. Soc. 2021, 143, 11811.
[64]
Li S.; Li X.; Wang T.; Yang Q.; Ouyang Z.; Chen J.; Zhai H.; Li X.; Cheng B. Adv. Synth. Catal. 2022, 364, 2346.
[65]
Cui J.-F.; Zhong W.-Q.; Huang J.-M. J. Org. Chem. 2023, 88, 1147.
[66]
Lu Y.-H.; Mu S.-Y.; Li H.-X.; Jiang J.; Wu C.; Zhou M.-H.; Ouyang W.-T.; He W.-M. Green Chem. 2023, 25, 5539.
[67]
Gausmann M.; Kreidt N.; Christmann M. Org. Lett. 2023, 25, 2228.
[68]
Li Y.; Wang H.; Zhang H.; Lei A. Chin. J. Chem. 2021, 39, 3023.
[69]
Li C.-J. Acc. Chem. Res. 2009, 42, 335.
[70]
Wang H.; He M.; Li Y.; Zhang H.; Yang D.; Nagasaka M.; Lv Z.; Guan Z.; Cao Y.; Gong F.; Zhou Z.; Zhu J.; Samanta S.; Chowdhury A. D.; Lei A. J. Am. Chem. Soc. 2021, 143, 3628.
[71]
Palma A.; Cárdenas J.; Frontana-Uribe B. A. Green Chem. 2009, 11, 283.
[72]
Nagahara S.; Okada Y.; Kitano Y.; Chiba K. Chem. Sci. 2021, 12, 12911.
[73]
Chiba K.; Kono Y.; Kim S.; Nishimoto K.; Kitano Y.; Tada M. Chem. Commun. 2002, No. 16, 1766.
[74]
(a) Cortes-Clerget M.; Berthon J.-Y.; Krolikiewicz-Renimel I.; Chaisemartin L.; Lipshutz B. H. Green Chem. 2017, 19, 4263.
[74]
(b) Cortes-Clerget M.; Spink S. E.; Gallagher G. P.; Chaisemartin L.; Filaire E.; Berthon J.-Y.; Lipshutz B. H. Green Chem. 2019, 21, 2610.
[74]
(c) Knauer S.; Koch N.; Uth C.; Meusinger R.; Avrutina O.; Kolmar H. Angew. Chem., Int. Ed. 2020, 59, 12984.
[74]
(d) Pawlas J.; Rasmussen J. H. ChemSusChem. 2021, 14, 3231.
文章导航

/