电化学修饰氨基酸和多肽类化合物的研究进展
收稿日期: 2023-10-24
修回日期: 2023-11-21
网络出版日期: 2023-12-01
基金资助
国家自然科学基金(22271067); 国家自然科学基金(22201052); 广东省普通高校重点(2022ZDZX2051)
Recent Progress in Electrochemical Modification of Amino Acids and Peptides
Received date: 2023-10-24
Revised date: 2023-11-21
Online published: 2023-12-01
Supported by
National Natural Science Foundation of China(22271067); National Natural Science Foundation of China(22201052); Key-Area Research Project of Guangdong Provincial Department of Education(2022ZDZX2051)
方新月 , 黄雅雯 , 胡新伟 , 阮志雄 . 电化学修饰氨基酸和多肽类化合物的研究进展[J]. 有机化学, 2024 , 44(3) : 903 -926 . DOI: 10.6023/cjoc202310024
With the increasing importance of peptides in the treatment of oncological diseases and biomedical applications, the development and construction of new methods for peptide molecules have become a hot research topic for organic synthetic chemists. As a green and efficient reaction tool, organic electrochemistry has been gradually utilized in the field of organic small molecule synthesis in recent years, and its mild and controllable features are suitable for solving the chemo- and regioselectivity problems of the existing bioconjugation strategies, which provide an important synthetic means for the selective modification of peptide molecules. The electrochemical approaches to amino acids and peptides modification developed in the last five years are reviewed, and the distinct advantages of electrochemical synthesis techniques and its applicability in the development of novel biocompatible methodologies are described.
| [1] | Lau J. L.; Dunn M. K. Bioorg. Med. Chem. 2018, 26, 2700. |
| [2] | (a) Craik D. J.; Fairlie D. P.; Liras S.; Price D. Chem. Biol. Drug Des. 2013, 81, 136. |
| [2] | (b) Cooper B. M.; Iegre J.; O'Donovan D. H.; Halvarsson M. ?.; Spring D. R. Chem. Soc. Rev. 2021, 50, 1480. |
| [2] | (c) Muttenthaler M.; King G. F.; Adams D. J.; Alewood P. F. Nat. Rev. Drug Discov. 2021, 20, 309. |
| [2] | (d) McCarver S. J.; Qiao J. X.; Carpenter J.; Borzilleri R. M.; Poss M. A.; Eastgate M. D.; Miller M. M.; MacMillan D. W. C. Angew. Chem., Int. Ed. 2017, 56, 728. |
| [3] | Fosgerau K.; Hoffmann T. Drug Discovery Today 2015, 20, 122. |
| [4] | (a) Ball Z. T. Acc. Chem. Res. 2013, 46, 560. |
| [4] | (b) Yi L.; Sun H.; Wu Y. W.; Triola G.; Waldmann H.; Goody R. S. Angew. Chem., Int. Ed. 2010, 122, 9607. |
| [4] | (c) deGruyter J. N.; Malins L. R.; Baran P. S. Biochemistry 2017, 56, 3863. |
| [4] | (d) Cravatt B. F.; Wright A. T.; Kozarich J. W. Annu. Rev. Biochem. 2008, 77, 383. |
| [4] | (e) Luther A.; Bisang C.; Obrecht D. Bioorg. Med. Chem. 2018, 26, 2850. |
| [4] | (f) Bai Z.; Wang H. Synlett 2020, 31, 199. |
| [4] | (g) Brimble M. A.; Zhang S.;Rodriguez, L. M. M. D. L.; Li, F. F. Chem. Sci. 2023, 14, 7782. |
| [4] | (h) Budisa N.; V?ller J.; Koksch B.; Acevedo-Rocha C.; Kubyshkin V.; Agostini F. Angew. Chem., Int. Ed. 2017, 56, 9680. |
| [4] | (i) Chow H. Y.; Zhang Y.; Matheson E.; Li X. Chem. Rev. 2019, 119, 9971. |
| [4] | (j) King T. A.; Kandemir J. M.; Walsh S. J.; Spring D. R. Chem. Soc. Rev. 2021, 50, 39. |
| [4] | (k) Liu J.; Wang P.; Yan Z.; Yan J.; Kenry; Zhu Q. ChemBioChem 2021, 22, 2762. |
| [4] | (l) Mondal S.; Chowdhury S. Adv. Synth. Catal. 2018, 360, 1884. |
| [5] | Bottecchia C.; No?l T. Chem.-Eur. J. 2018, 25, 26. |
| [6] | Noisier A. F.; Brimble M. A. Chem. Rev. 2014, 114, 8775. |
| [7] | Wang W.; Lorion M. M.; Shah J.; Kapdi A. R.; Ackermann L. Angew. Chem., Int. Ed. 2018, 57, 14700. |
| [8] | Tong H.-R.; Li B.; Li G.; He G.; Chen G. CCS Chem. 2021, 3, 1797. |
| [9] | Meyer T. H.; Choi I.; Tian C.; Ackermann L. Chem 2020, 6, 2484. |
| [10] | Siu J. C.; Fu N.; Lin S. Acc. Chem. Res. 2020, 53, 547. |
| [11] | Yamamoto K.; Kuriyama M.; Onomura O. Acc. Chem. Res. 2019, 53, 105. |
| [12] | Ang N. W.; Oliveira J. C.; Ackermann L. Angew. Chem., Int. Ed. 2020, 59, 12842. |
| [13] | Rosen B.; Werner E. J. Am. Chem. Soc. 2014, 136, 5571. |
| [14] | Mackay A. S.; Payne R. J.; Malins L. R. J. Am. Chem. Soc. 2021, 144, 23. |
| [15] | Brabec V.; Mornstein V. Biophys. Chem. 1980, 12, 159. |
| [16] | (a) Brunelle P.; Rauk A. J. Phys. Chem. 2004, 108, 11032. |
| [16] | (b) Harriman A. J. Phys. Chem. 1987, 91, 6102. |
| [16] | (c) Jocelyn P. Eur. J. Biochem. 1967, 2, 327. |
| [16] | (d) Navaratnam S.; Parsons B. J. Chem. Soc., Faraday Trans. 1998, 94, 2577. |
| [16] | (e) Wilson G. S.; Glass R. S. J. Inorg. Biochem. 1994, 55, 87. |
| [17] | Alvarez-Dorta D.; Thobie-Gautier C.; Croyal M.; Bouzelha M.; Mével M.; Deniaud D.; Boujtita M.; Gouin S. G. J. Am. Chem. Soc. 2018, 140, 17120. |
| [18] | Ban H.; Gavrilyuk J.; Barbas III C. F. J. Am. Chem. Soc. 2010, 132, 1523. |
| [19] | Ban H.; Nagano M.; Gavrilyuk J.; Hakamata W.; Inokuma T.; Barbas III C. F. Bioconjugate Chem. 2013, 24, 520. |
| [20] | Jessica F.; Corentin W.; Sylvestre D.; Christian L.; André L. RSC Adv. 2013, 3, 24936. |
| [21] | (a) Nilo A.; Allan M.; Brogioni B.; Proietti D.; Cattaneo V.; Crotti S.; Sokup S.; Zhai H.; Margarit I.; Berti F. Bioconjugate Chem. 2014, 25, 2105. |
| [21] | (b) Hu Q.-Y.; Allan M.; Adamo R.; Quinn D.; Zhai H.; Wu G.; Clark K.; Zhou J.; Ortiz S.; Wang B. Chem. Sci. 2013, 4, 3827. |
| [22] | Bauer D. M.; Ahmed I.; Vigovskaya A.; Fruk L. Bioconjugate Chem. 2013, 24, 1094. |
| [23] | Madl C. M.; Heilshorn S. C. Bioconjugate Chem. 2017, 28, 724. |
| [24] | Cui L.; Ma Y.; Li M.; Wei Z.; Huan Y.; Li H.; Fei Q.; Zheng L. Anal. Chem. 2021, 93, 4434. |
| [25] | Sato, S.; Matsumura, M.; Kadonosono, T.; Abe, S.; Ueno, T.; Ueda, H.; Nakamura, H. Bioconjugate Chem. 2020, 31, 1417. |
| [26] | Depienne S.; Alvarez-Dorta D.; Croyal M.; Temgoua R. C. T.; Charlier C.; Deniaud D.; Mével M.; Boujtita M.; Gouin S. G. Chem. Sci. 2021, 12, 15374. |
| [27] | Song C.; Liu K.; Wang Z.; Ding B.; Wang S.; Weng Y.; Chiang C.-W.; Lei A. Chem. Sci. 2019, 10, 7982. |
| [28] | Stangier M.; Messinis A. M.; Oliveira J. C. A.; Yu H.; Ackermann L. Nat. Commun. 2021, 12, 4736. |
| [29] | Hou X.; Kaplaneris N.; Yuan B.; Frey J.; Ohyama T.; Messinis A. M.; Ackermann L. Chem. Sci. 2022, 13, 3461. |
| [30] | You S.; Wang R.; Ma C.; Lu C.; Yang G.; Liu L.; Weng Y.; Gao M. Org. Chem. Front. 2023, 10, 4606. |
| [31] | Toyama E.; Maruyama K.; Sugai T.; Kondo M.; Masaoka S.; Saitoh T.; Oisaki K.; Kanai M. 2019, 10.26434/ chemrxiv.7795484.v1. |
| [32] | Seki Y.; Ishiyama T.; Sasaki D.; Abe J.; Sohma Y.; Oisaki K.; Kanai M. J. Am. Chem. Soc. 2016, 138, 10798. |
| [33] | Wu J.; Abou-Hamdan H.; Guillot R.; Kouklovsky C.; Vincent G. Chem. Commun. 2020, 56, 1713. |
| [34] | Weng Y.; Xu X.; Chen H.; Zhang Y.; Zhuo X. Angew. Chem., Int. Ed. 2022, 61, e202206308. |
| [35] | Qiu Y.; Scheremetjew A.; Finger L. H.; Ackermann L. Chem.- Eur. J. 2020, 26, 3241. |
| [36] | Chen H. C.; Wan C.; Shih W. H.; Kao C. Y.; Jiang H.; Weng Y.; Chiang C. W. Asian J. Org. Chem. 2022, 12, e202200647. |
| [37] | Kawamata Y.; Vantourout J. C.; Hickey D. P.; Bai P.; Chen L.; Hou Q.; Qiao W.; Barman K.; Edwards M. A.; Garrido-Castro A. F.; deGruyter J. N.; Nakamura H.; Knouse K.; Qin C.; Clay K. J.; Bao D.; Li C.; Starr J. T.; Garcia-Irizarry C.; Sach N.; White H. S.; Neurock M.; Minteer S. D.; Baran P. S. J. Am. Chem. Soc. 2019, 141, 6392. |
| [38] | Ma Y.; Hong J.; Yao X.; Liu C.; Zhang L.; Fu Y.; Sun M.; Cheng R.; Li Z.; Ye J. Org. Lett. 2021, 23, 9387. |
| [39] | Novaes L. F. T.; Ho J. S. K.; Mao K.; Liu K.; Tanwar M.; Neurock M.; Villemure E.; Terrett J. A.; Lin S. J. Am. Chem. Soc. 2022, 144, 1187. |
| [40] | Lamb C. M. G.; Shi J.; Wilden J. D.; Macmillan D. Org. Biomol. Chem. 2022, 20, 7343. |
| [41] | Mackay A. S.; Maxwell J. W.; Bedding M. J.; Kulkarni S. S.; Byrne S. A.; Kambanis L.; Popescu M. V.; Paton R. S.; Malins L. R.; Ashhurst A. S.; Corcilius L.; Payne R. J. Angew. Chem.,Int. Ed. 2023, e202313037. |
| [42] | You S.; Ruan M.; Lu C.; Liu L.; Weng Y.; Yang G.; Wang S.; Alhumade H.; Lei A.; Gao M. Chem. Sci. 2022, 13, 2310. |
| [43] | Liu L.; Xu Z.; Liu T.; Xu C.; Zhang W.; Hua X.; Ling F.; Zhong W. J. Org. Chem. 2022, 87, 11379. |
| [44] | Wang R.; Wang J.; Zhang Y.; Wang B.; Xia Y.; Xue F.; Jin W.; Liu C. Adv. Synth. Catal. 2023, 365, 900. |
| [45] | Kawamata Y.; Hayashi K.; Carlson E.; Shaji S.; Waldmann D.; Simmons B. J.; Edwards J. T.; Zapf C. W.; Saito M.; Baran P. S. J. Am. Chem. Soc. 2021, 143, 16580. |
| [46] | Zeng S.; Fang S.; Cai H.; Wang D.; Liu W.; Hu X.; Sun P.; Ruan Z. Chem. Asian J. 2022, 17, e202200762. |
| [47] | Qiu Y.; Stangier M.; Meyer T. H.; Oliveira J. C. A.; Ackermann L. Angew. Chem., Int. Ed. 2018, 57, 14179. |
| [48] | Feng T.; Wang S.; Liu Y.; Liu S.; Qiu Y. Angew. Chem., Int. Ed. 2021, 61, e202115178. |
| [49] | Li P.; Guo C.; Wang S.; Ma D.; Feng T.; Wang Y.; Qiu Y. Nat. Commun. 2022, 13, 3774. |
| [50] | Wang Y.; Tang S.; Yang G.; Wang S.; Ma D.; Qiu Y. Angew. Chem., Int. Ed. 2022, 61, e202207746. |
| [51] | Liang H.; Julaiti Y.; Zhao C.-G.; Xie J. Nat. Synth. 2023, 2, 338. |
| [52] | Huang H.; Lambert T. H. Angew. Chem., Int. Ed. 2021, 60, 11163. |
| [53] | Huang H.; Lambert T. H. J. Am. Chem. Soc. 2021, 143, 7247. |
| [54] | Klocke E.; Matzeit A.; Gockeln M.; Sch?fer H. J. Chem. Ber. 1993, 126, 1623. |
| [55] | Shao X.; Zheng Y.; Tian L.; Martín-Torres I.; Echavarren A. M.; Wang Y. Org. Lett. 2019, 21, 9262. |
| [56] | Chen X.; Luo X.; Peng X.; Guo J.; Zai J.; Wang P. Chem. Eur. J. 2020, 26, 3226. |
| [57] | Barton L. M.; Chen L.; Blackmond D. G.; Baran P. S. Proc. Natl. Acad. Sci. 2021, 118, e2109408118. |
| [58] | Qin T.; Malins L. R.; Edwards J. T.; Merchant R. R.; Novak A. J.; Zhong J. Z.; Mills R. B.; Yan M.; Yuan C.; Eastgate M. D. Angew. Chem., Int. Ed. 2017, 56, 260. |
| [59] | McCarver S. J.; Qiao J. X.; Carpenter J.; Borzilleri R. M.; Poss M. A.; Eastgate M. D.; Miller M. M.; MacMillan D. W. Angew. Chem., Int. Ed. 2017, 129, 746. |
| [60] | K?ckinger M.; Hanselmann P.; Roberge D. M.; Geotti-Bianchini P.; Kappe C. O.; Cantillo D. Green Chem. 2021, 23, 2382. |
| [61] | Renaud P.; Seebach D. Angew. Chem.,Int. Ed. Engl. 1986, 25, 843. |
| [62] | Lin Y.; Malins L. R. Chem. Sci. 2020, 11, 10752. |
| [63] | Lin Y.; Malins L. R. J. Am. Chem. Soc. 2021, 143, 11811. |
| [64] | Li S.; Li X.; Wang T.; Yang Q.; Ouyang Z.; Chen J.; Zhai H.; Li X.; Cheng B. Adv. Synth. Catal. 2022, 364, 2346. |
| [65] | Cui J.-F.; Zhong W.-Q.; Huang J.-M. J. Org. Chem. 2023, 88, 1147. |
| [66] | Lu Y.-H.; Mu S.-Y.; Li H.-X.; Jiang J.; Wu C.; Zhou M.-H.; Ouyang W.-T.; He W.-M. Green Chem. 2023, 25, 5539. |
| [67] | Gausmann M.; Kreidt N.; Christmann M. Org. Lett. 2023, 25, 2228. |
| [68] | Li Y.; Wang H.; Zhang H.; Lei A. Chin. J. Chem. 2021, 39, 3023. |
| [69] | Li C.-J. Acc. Chem. Res. 2009, 42, 335. |
| [70] | Wang H.; He M.; Li Y.; Zhang H.; Yang D.; Nagasaka M.; Lv Z.; Guan Z.; Cao Y.; Gong F.; Zhou Z.; Zhu J.; Samanta S.; Chowdhury A. D.; Lei A. J. Am. Chem. Soc. 2021, 143, 3628. |
| [71] | Palma A.; Cárdenas J.; Frontana-Uribe B. A. Green Chem. 2009, 11, 283. |
| [72] | Nagahara S.; Okada Y.; Kitano Y.; Chiba K. Chem. Sci. 2021, 12, 12911. |
| [73] | Chiba K.; Kono Y.; Kim S.; Nishimoto K.; Kitano Y.; Tada M. Chem. Commun. 2002, No. 16, 1766. |
| [74] | (a) Cortes-Clerget M.; Berthon J.-Y.; Krolikiewicz-Renimel I.; Chaisemartin L.; Lipshutz B. H. Green Chem. 2017, 19, 4263. |
| [74] | (b) Cortes-Clerget M.; Spink S. E.; Gallagher G. P.; Chaisemartin L.; Filaire E.; Berthon J.-Y.; Lipshutz B. H. Green Chem. 2019, 21, 2610. |
| [74] | (c) Knauer S.; Koch N.; Uth C.; Meusinger R.; Avrutina O.; Kolmar H. Angew. Chem., Int. Ed. 2020, 59, 12984. |
| [74] | (d) Pawlas J.; Rasmussen J. H. ChemSusChem. 2021, 14, 3231. |
/
| 〈 |
|
〉 |