氮杂吲哚啉及其衍生物的合成研究进展
收稿日期: 2023-09-08
修回日期: 2023-11-22
网络出版日期: 2023-12-08
基金资助
国家自然科学基金(22201145); 南通大学高层次人才科研项目(03083031); 南通市科技(JC12022052)
Research Progress in the Synthesis of Azaindoline and Its Derivatives
Received date: 2023-09-08
Revised date: 2023-11-22
Online published: 2023-12-08
Supported by
National Natural Science Foundation of China(22201145); Program of High-Level Talents of Nantong University(03083031); Science and Technology Project of Nantong City(JC12022052)
叶浩 , 张海滨 , 吴亚男 , 吴新星 . 氮杂吲哚啉及其衍生物的合成研究进展[J]. 有机化学, 2024 , 44(4) : 1106 -1123 . DOI: 10.6023/cjoc202308025
The azaindoline skeleton exists in a wide range of bioactive molecules and natural products, and has significant biological and pharmaceutical activities. The synthesis of these compounds has attracted great attention from chemists. However, due to the electron-deficient nature of the pyridine ring where the nitrogen atom is located, many traditional methods for the synthesis of indoline cannot effectively construct the azaindoline skeleton. In recent years, chemists have been exploring the synthesis of azaindoline skeleton and have made some progress. According to the different reaction types, the synthesis of azaindolines in recent years and the key reaction mechanisms are reviewed and discussed, and the future development prospect of this research field is prospected.
Key words: azaindoline; synthesis; catalytic reaction
| [1] | (a) Cheung M.; Hunter R. N. III; Peel M. R.; Lackey K. E. Heterocycles 2001, 55, 1583. |
| [1] | (b) Ting P. C.; Kaminski J. J.; Sherlock M. H.; Tom W. C.; Lee J. F.; Bryant R. W.; Watnick A. S.; McPhail A. T. J. Med. Chem. 1990, 33, 2697. |
| [1] | (c) Kumar V.; Dority J. A.; Bacon E. R.; Singh B.; Lesher G. Y. J. Org. Chem. 1992, 57, 6995. |
| [1] | (d) Wood E. R.; Kuyper L.; Petrov K. G.; Hunter R. N.; Harris P. A.; Lackey K. Bioorg. Med. Chem. Lett. 2004, 14, 935. |
| [1] | (e) Yuan C.; Pan C. Chin. J. Org. Chem. 2023, 43, 156. (in Chinese) |
| [1] | (袁成, 潘长多, 有机化学, 2023, 43, 156.) |
| [2] | (a) Gonzalez-Lopez De Turiso F.; Shin Y.; Brown M.; Cardozo M.; Chen Y.; Fong D.; Hao X.; He X.; Henne K.; Hu Y. L.; Johnson M. G.; Kohn T.; Lohman J.; McBride H. J.; McGee L. R.; Medina J. C.; Metz D.; Miner K.; Mohn D.; Pattaropong V.; Seganish J.; Simard J. L.; Wannberg S.; Whittington D. A.; Yu G.; Cushing T. D. J. Med. Chem. 2012, 55, 7667. |
| [2] | (b) Takai K.; Inoue Y.; Konishi Y.; Suwa A.; Uruno Y.; Matsuda H.; Nakako T.; Sakai M.; Nishikawa H.; Hashimoto G.; Enomoto T.; Kitamura A.; Uematsu Y.; Kiyoshi A.; Sumiyoshi T. Bioorg. Med. Chem. Lett. 2014, 24, 3189. |
| [2] | (c) Bai B.; Xu F.; Yang J.; Zhang G.; Mao D.; Wang N. Chin. J. Org. Chem. 2021, 41, 2335. (in Chinese) |
| [2] | (白冰, 徐芳琳, 杨静, 张改红, 毛多斌, 王宁, 有机化学, 2021, 41, 2335.) |
| [3] | (a) Mérour J.-Y.; Routier S.; Suzenet F.; Joseph B. Tetrahedron 2013, 69, 4767. |
| [3] | (b) Popowycz F.; Mérour J.-Y.; Joseph B. Tetrahedron 2007, 63, 8689. |
| [3] | (c) Popowycz F.; Routier S.; Joseph B.; Mérour J.-Y. Tetrahedron 2007, 63, 1031. |
| [3] | (d) Liang R.-X.; Xu D.-Y.; Yang F.-M.; Jia Y.-X. Chem. Commun. 2019, 55, 7711. |
| [3] | (e) Liu K.; Song Y.-F.; Gao Y.; Luo J.-Q.; Jia Y.-X. Chem. Commun. 2022, 58, 5893. |
| [3] | (f) Liang R.-X.; Jia Y.-X. Acc. Chem. Res. 2022, 55, 734. |
| [3] | (g) Hu Y.-Y.; Xu X.-Q.; Deng W.-C.; Liang R.-X.; Jia Y.-X. Org. Lett. 2023, 25, 6122. |
| [3] | (h) Lu J.; He Y.; Ren L.; Li D.; Pan X.; Yang L.; Wang J.; Wei S.; Wei J. Synlett 2023, doi: 10.1055/a-2184-5014. |
| [3] | (i) Huang H.; Li X.; Su J.; Song Q. Chin. J. Org. Chem. 2023, 43, 1146. (in Chinese) |
| [3] | (黄华, 李鑫, 苏建科, 宋秋玲, 有机化学, 2023, 43, 1146.) |
| [3] | (j) Zhang Z.; Yi J.-J.; Aslam M.; Wan J.-P.; Sun M. Synthesis 2023, 55, 3617. |
| [4] | Desarbre E.; Mérour J.-Y. Tetrahedron Lett. 1996, 37, 43. |
| [5] | Schramm O. G.; Dediu N.; Oeser T.; Müller T. J. J. J. Org. Chem. 2006, 71, 3494. |
| [6] | Rousseaux S.; Davi M.; Sofack-Kreutzer J.; Pierre C.; Kefalidis C. E.; Clot E.; Fagnou K.; Baudoin O. J. Am. Chem. Soc. 2010, 132, 10706. |
| [7] | Schempp T. T.; Daniels B. E.; Staben S. T.; Stivala C. E. Org. Lett. 2017, 19, 3616. |
| [8] | Wu X.-X.; Liu A.; Xu S.; He J.; Sun W.; Chen S. Org. Lett. 2018, 20, 1538. |
| [9] | Wu X.-X.; Tian H.; Wang Y.; Liu A.; Chen H.; Fan Z.; Li X.; Chen S. Org. Chem. Front. 2018, 5, 3310. |
| [10] | Ye H.; Zhang R.; Xia X.; Ding Y.; Sun M.; Shi L.; Jiang G.; Wu X.-X. Synthesis 2021, 53, 4079. |
| [11] | Ye H.; Wu L.; Zhang M.; Jiang G.; Dai H.; Wu X.-X. Chem. Commun. 2022, 58, 6825. |
| [12] | Li X.; Zhou B.; Yang R.-Z.; Yang F.-M.; Liang R.-X.; Liu R.-R.; Jia Y.-X. J. Am. Chem. Soc. 2018, 140, 13945. |
| [13] | Xie J.-H.; Zheng C.; You S.-L. Angew. Chem., Int. Ed. 2021, 60, 22184. |
| [14] | Das S. K.; Roy S.; Khatua H.; Chattopadhyay B. J. Am. Chem. Soc. 2020, 142, 16211. |
| [15] | Wipf P.; Maciejewski J. P. Org. Lett. 2008, 10, 4383. |
| [16] | Ye P.; Shao Y.; Zhang F.; Zou J.; Ye X.; Chen J. Adv. Synth. Catal. 2020, 362, 851. |
| [17] | Spivey A. C.; Fekner T.; Spey S. E.; Adams H. J. Org. Chem. 1999, 64, 9430. |
| [18] | Viswanathan R.; Prabhakaran E. N.; Plotkin M. A.; Johnston J. N. J. Am. Chem. Soc. 2003, 125, 163. |
| [19] | Davies A. J.; Brands K. M. J.; Cowden C. J.; Dolling U. H.; Lieberman D. R. Tetrahedron Lett. 2004, 45, 1721. |
| [20] | Bacqué E.; El Qacemi M.; Zard S. Z. Org. Lett. 2004, 6, 3671. |
| [21] | Fayol A.; Zhu J. Org. Lett. 2005, 7, 239. |
| [22] | Nguyen H. N.; Wang Z. J. Tetrahedron Lett. 2007, 48, 7460. |
| [23] | Bailey W. F.; Salgaonkar P. D.; Brubaker J. D.; Sharma V. Org. Lett. 2008, 10, 1071. |
| [24] | Laot Y.; Petit L.; Zard S. Z. Org. Lett. 2010, 12, 3426. |
| [25] | Liu Z.; Qin L.; Zard S. Z. Org. Lett. 2014, 16, 2704. |
| [26] | Métro T.-X.; Fayet C.; Arnaud F.; Rameix N.; Fraisse P.; Janody S.; Sevrin M.; George P.; Vogel R. Synlett 2011, 5, 684. |
| [27] | Moss T. A.; Hayter B. R.; Hollingsworth I. A.; Nowak T. Synlett 2012, 23, 2408. |
| [28] | Danneman M. W.; Hong K. B.; Johnston J. N. Org. Lett. 2015, 17, 3806. |
| [29] | Nuhant P.; Allais C.; Chen M. Z.; Coe J. W.; Dermenci A.; Fadeyi O. O.; Flick A. C.; Mousseau J. J. Org. Lett. 2015, 17, 4292. |
| [30] | Lamb A. D.; Davey P. D.; Driver R. W.; Thompson A. L.; Smith M. D. Org. Lett. 2016, 18, 5372. |
| [31] | Simmons B. J.; Ho?mann M.; Champagne P. A.; Picazo E.; Yamakawa K.; Morrill L. A.; Houk K. N.; Garg N. K. J. Am. Chem. Soc. 2017, 139, 14833. |
| [32] | Wang J.; Liu Y.; Wei Z.; Cao J.; Liang D.; Lin Y.; Duan H.; J. Org. Chem. 2020, 85, 4047. |
| [33] | Nishi T.; Mishima N.; Kato H.; Yamada K. Synlett 2021, 32, 1034. |
| [34] | Xu X.; Ou M.; Wang Y.-E.; Lin T.; Xiong D.; Xue F.; Walsh P. J.; Mao J. Org. Chem. Front. 2022, 9, 2541. |
/
| 〈 |
|
〉 |