综述与进展

氮杂吲哚啉及其衍生物的合成研究进展

  • 叶浩 ,
  • 张海滨 ,
  • 吴亚男 ,
  • 吴新星
展开
  • a 南通大学化学化工学院 江苏南通 226019
    b 南通职业大学药品与环境工程学院 江苏南通 226019

收稿日期: 2023-09-08

  修回日期: 2023-11-22

  网络出版日期: 2023-12-08

基金资助

国家自然科学基金(22201145); 南通大学高层次人才科研项目(03083031); 南通市科技(JC12022052)

Research Progress in the Synthesis of Azaindoline and Its Derivatives

  • Hao Ye ,
  • Haibin Zhang ,
  • Ya'nan Wu ,
  • Xinxing Wu
Expand
  • a College of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019
    b College of Pharmaceutical and Environmental Engineering, Nantong Vocational University, Nantong, Jiangsu 226019

Received date: 2023-09-08

  Revised date: 2023-11-22

  Online published: 2023-12-08

Supported by

National Natural Science Foundation of China(22201145); Program of High-Level Talents of Nantong University(03083031); Science and Technology Project of Nantong City(JC12022052)

摘要

氮杂吲哚啉骨架广泛存在于多种生物活性分子和天然产物中, 有着显著的生物和药理活性, 受到了合成化学家的广泛关注. 然而, 由于氮原子所在吡啶环上的缺电子特性, 许多传统用于合成吲哚啉的方法不能有效构建氮杂吲哚啉骨架. 近年来, 化学工作者一直致力于探索氮杂吲哚啉骨架的合成并取得了一些进展. 根据反应类型的不同, 对近年来合成氮杂吲哚啉类化合物的反应及关键反应机理进行了综述和探讨, 并展望了该研究领域的未来发展前景.

本文引用格式

叶浩 , 张海滨 , 吴亚男 , 吴新星 . 氮杂吲哚啉及其衍生物的合成研究进展[J]. 有机化学, 2024 , 44(4) : 1106 -1123 . DOI: 10.6023/cjoc202308025

Abstract

The azaindoline skeleton exists in a wide range of bioactive molecules and natural products, and has significant biological and pharmaceutical activities. The synthesis of these compounds has attracted great attention from chemists. However, due to the electron-deficient nature of the pyridine ring where the nitrogen atom is located, many traditional methods for the synthesis of indoline cannot effectively construct the azaindoline skeleton. In recent years, chemists have been exploring the synthesis of azaindoline skeleton and have made some progress. According to the different reaction types, the synthesis of azaindolines in recent years and the key reaction mechanisms are reviewed and discussed, and the future development prospect of this research field is prospected.

参考文献

[1]
(a) Cheung M.; Hunter R. N. III; Peel M. R.; Lackey K. E. Heterocycles 2001, 55, 1583.
[1]
(b) Ting P. C.; Kaminski J. J.; Sherlock M. H.; Tom W. C.; Lee J. F.; Bryant R. W.; Watnick A. S.; McPhail A. T. J. Med. Chem. 1990, 33, 2697.
[1]
(c) Kumar V.; Dority J. A.; Bacon E. R.; Singh B.; Lesher G. Y. J. Org. Chem. 1992, 57, 6995.
[1]
(d) Wood E. R.; Kuyper L.; Petrov K. G.; Hunter R. N.; Harris P. A.; Lackey K. Bioorg. Med. Chem. Lett. 2004, 14, 935.
[1]
(e) Yuan C.; Pan C. Chin. J. Org. Chem. 2023, 43, 156. (in Chinese)
[1]
(袁成, 潘长多, 有机化学, 2023, 43, 156.)
[2]
(a) Gonzalez-Lopez De Turiso F.; Shin Y.; Brown M.; Cardozo M.; Chen Y.; Fong D.; Hao X.; He X.; Henne K.; Hu Y. L.; Johnson M. G.; Kohn T.; Lohman J.; McBride H. J.; McGee L. R.; Medina J. C.; Metz D.; Miner K.; Mohn D.; Pattaropong V.; Seganish J.; Simard J. L.; Wannberg S.; Whittington D. A.; Yu G.; Cushing T. D. J. Med. Chem. 2012, 55, 7667.
[2]
(b) Takai K.; Inoue Y.; Konishi Y.; Suwa A.; Uruno Y.; Matsuda H.; Nakako T.; Sakai M.; Nishikawa H.; Hashimoto G.; Enomoto T.; Kitamura A.; Uematsu Y.; Kiyoshi A.; Sumiyoshi T. Bioorg. Med. Chem. Lett. 2014, 24, 3189.
[2]
(c) Bai B.; Xu F.; Yang J.; Zhang G.; Mao D.; Wang N. Chin. J. Org. Chem. 2021, 41, 2335. (in Chinese)
[2]
(白冰, 徐芳琳, 杨静, 张改红, 毛多斌, 王宁, 有机化学, 2021, 41, 2335.)
[3]
(a) Mérour J.-Y.; Routier S.; Suzenet F.; Joseph B. Tetrahedron 2013, 69, 4767.
[3]
(b) Popowycz F.; Mérour J.-Y.; Joseph B. Tetrahedron 2007, 63, 8689.
[3]
(c) Popowycz F.; Routier S.; Joseph B.; Mérour J.-Y. Tetrahedron 2007, 63, 1031.
[3]
(d) Liang R.-X.; Xu D.-Y.; Yang F.-M.; Jia Y.-X. Chem. Commun. 2019, 55, 7711.
[3]
(e) Liu K.; Song Y.-F.; Gao Y.; Luo J.-Q.; Jia Y.-X. Chem. Commun. 2022, 58, 5893.
[3]
(f) Liang R.-X.; Jia Y.-X. Acc. Chem. Res. 2022, 55, 734.
[3]
(g) Hu Y.-Y.; Xu X.-Q.; Deng W.-C.; Liang R.-X.; Jia Y.-X. Org. Lett. 2023, 25, 6122.
[3]
(h) Lu J.; He Y.; Ren L.; Li D.; Pan X.; Yang L.; Wang J.; Wei S.; Wei J. Synlett 2023, doi: 10.1055/a-2184-5014.
[3]
(i) Huang H.; Li X.; Su J.; Song Q. Chin. J. Org. Chem. 2023, 43, 1146. (in Chinese)
[3]
(黄华, 李鑫, 苏建科, 宋秋玲, 有机化学, 2023, 43, 1146.)
[3]
(j) Zhang Z.; Yi J.-J.; Aslam M.; Wan J.-P.; Sun M. Synthesis 2023, 55, 3617.
[4]
Desarbre E.; Mérour J.-Y. Tetrahedron Lett. 1996, 37, 43.
[5]
Schramm O. G.; Dediu N.; Oeser T.; Müller T. J. J. J. Org. Chem. 2006, 71, 3494.
[6]
Rousseaux S.; Davi M.; Sofack-Kreutzer J.; Pierre C.; Kefalidis C. E.; Clot E.; Fagnou K.; Baudoin O. J. Am. Chem. Soc. 2010, 132, 10706.
[7]
Schempp T. T.; Daniels B. E.; Staben S. T.; Stivala C. E. Org. Lett. 2017, 19, 3616.
[8]
Wu X.-X.; Liu A.; Xu S.; He J.; Sun W.; Chen S. Org. Lett. 2018, 20, 1538.
[9]
Wu X.-X.; Tian H.; Wang Y.; Liu A.; Chen H.; Fan Z.; Li X.; Chen S. Org. Chem. Front. 2018, 5, 3310.
[10]
Ye H.; Zhang R.; Xia X.; Ding Y.; Sun M.; Shi L.; Jiang G.; Wu X.-X. Synthesis 2021, 53, 4079.
[11]
Ye H.; Wu L.; Zhang M.; Jiang G.; Dai H.; Wu X.-X. Chem. Commun. 2022, 58, 6825.
[12]
Li X.; Zhou B.; Yang R.-Z.; Yang F.-M.; Liang R.-X.; Liu R.-R.; Jia Y.-X. J. Am. Chem. Soc. 2018, 140, 13945.
[13]
Xie J.-H.; Zheng C.; You S.-L. Angew. Chem., Int. Ed. 2021, 60, 22184.
[14]
Das S. K.; Roy S.; Khatua H.; Chattopadhyay B. J. Am. Chem. Soc. 2020, 142, 16211.
[15]
Wipf P.; Maciejewski J. P. Org. Lett. 2008, 10, 4383.
[16]
Ye P.; Shao Y.; Zhang F.; Zou J.; Ye X.; Chen J. Adv. Synth. Catal. 2020, 362, 851.
[17]
Spivey A. C.; Fekner T.; Spey S. E.; Adams H. J. Org. Chem. 1999, 64, 9430.
[18]
Viswanathan R.; Prabhakaran E. N.; Plotkin M. A.; Johnston J. N. J. Am. Chem. Soc. 2003, 125, 163.
[19]
Davies A. J.; Brands K. M. J.; Cowden C. J.; Dolling U. H.; Lieberman D. R. Tetrahedron Lett. 2004, 45, 1721.
[20]
Bacqué E.; El Qacemi M.; Zard S. Z. Org. Lett. 2004, 6, 3671.
[21]
Fayol A.; Zhu J. Org. Lett. 2005, 7, 239.
[22]
Nguyen H. N.; Wang Z. J. Tetrahedron Lett. 2007, 48, 7460.
[23]
Bailey W. F.; Salgaonkar P. D.; Brubaker J. D.; Sharma V. Org. Lett. 2008, 10, 1071.
[24]
Laot Y.; Petit L.; Zard S. Z. Org. Lett. 2010, 12, 3426.
[25]
Liu Z.; Qin L.; Zard S. Z. Org. Lett. 2014, 16, 2704.
[26]
Métro T.-X.; Fayet C.; Arnaud F.; Rameix N.; Fraisse P.; Janody S.; Sevrin M.; George P.; Vogel R. Synlett 2011, 5, 684.
[27]
Moss T. A.; Hayter B. R.; Hollingsworth I. A.; Nowak T. Synlett 2012, 23, 2408.
[28]
Danneman M. W.; Hong K. B.; Johnston J. N. Org. Lett. 2015, 17, 3806.
[29]
Nuhant P.; Allais C.; Chen M. Z.; Coe J. W.; Dermenci A.; Fadeyi O. O.; Flick A. C.; Mousseau J. J. Org. Lett. 2015, 17, 4292.
[30]
Lamb A. D.; Davey P. D.; Driver R. W.; Thompson A. L.; Smith M. D. Org. Lett. 2016, 18, 5372.
[31]
Simmons B. J.; Ho?mann M.; Champagne P. A.; Picazo E.; Yamakawa K.; Morrill L. A.; Houk K. N.; Garg N. K. J. Am. Chem. Soc. 2017, 139, 14833.
[32]
Wang J.; Liu Y.; Wei Z.; Cao J.; Liang D.; Lin Y.; Duan H.; J. Org. Chem. 2020, 85, 4047.
[33]
Nishi T.; Mishima N.; Kato H.; Yamada K. Synlett 2021, 32, 1034.
[34]
Xu X.; Ou M.; Wang Y.-E.; Lin T.; Xiong D.; Xue F.; Walsh P. J.; Mao J. Org. Chem. Front. 2022, 9, 2541.
文章导航

/