研究论文

三氟甲硫基自由基引发涉及烯烃、AgSCF3和喹喔啉酮的三组分反应

  • 高燊原 ,
  • 诸昊穹 ,
  • 金巧玲 ,
  • 金露儿 ,
  • 王晓钟 ,
  • 戴立言
展开
  • 浙江大学化学与生物工程学院 浙江省先进化工制造技术重点实验室 杭州 310027

收稿日期: 2023-10-03

  修回日期: 2023-11-20

  网络出版日期: 2023-12-08

基金资助

浙江省先进化工制造技术重点实验室(2017E10001)

Three-Component Reaction Involving Alkenes, AgSCF3 and Quinoxalinones Initiated by Trifluoromethylthio Radical

  • Shenyuan Gao ,
  • Haoqiong Zhu ,
  • Qiaoling Jin ,
  • Lu'er Jin ,
  • Xiaozhong Wang ,
  • Liyan Dai
Expand
  • Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027

Received date: 2023-10-03

  Revised date: 2023-11-20

  Online published: 2023-12-08

Supported by

Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology(2017E10001)

摘要

提出了一种新的非活化烯烃、喹喔啉酮和AgSCF3的三组分级联自由基反应. 在氧化剂K2S2O8的作用下, 得到了40个含SCF3的喹喔啉酮类衍生物, 其中产率最高至78%. 该方法是一种在温和条件下制备含三氟甲硫基喹唑啉酮类化合物, 具有产率高、底物范围广、原子经济性高和环保高效等优势.

本文引用格式

高燊原 , 诸昊穹 , 金巧玲 , 金露儿 , 王晓钟 , 戴立言 . 三氟甲硫基自由基引发涉及烯烃、AgSCF3和喹喔啉酮的三组分反应[J]. 有机化学, 2024 , 44(4) : 1264 -1275 . DOI: 10.6023/cjoc202310002

Abstract

A novel three-component cascade radical reaction involving non-activated olefins, quinoxalin-2(1H)-ones, and AgSCF3 was proposed. Under the action of the oxidizing agent K2S2O8, 40 quinoxaline derivatives containing SCF3 were obtained with the highest yield of 78%. This method provides a mild and environmentally friendly approach to prepare trifluoromethylthio-substituted quinoxalines, offering advantages such as high yield, broad substrate scope, atom economy, and environmental efficiency.

参考文献

[1]
(a) Wu H. Z.; Luo T.; Jiang J. W.; Wan J. P. Chin. J. Org. Chem. 2022, 42(11), 3721. (in Chinese)
[1]
(吴豪志, 罗田, 姜建文, 万结平, 有机化学, 2022, 42(11), 3721.)
[1]
(b) Chen D. M.; Jiang J. W.; Wan J. P. Chin. J. Chem. 2022, 40(21), 2582.
[1]
(c) Shi L. L.; Li T. T.; Mei G. J. Green Synth. Catal. 2022, 3(3), 227.
[1]
(d) Guo H. J.; Liu Y. Y.; Wen C. P.; Wan J. P. Green Chem. 2022, 24(13), 5058.
[1]
(e) Jia X. M.; Ma X.; Feng W.; Zhang J. Q.; Zhao Y. L.; Guo B.; Tang L.; Yang Y. Y. J. Org. Chem. 2022, 87(24), 16492.
[2]
(a) Moschner J.; Stulberg V.; Fernandes R.; Huhmann S.; Leppkes J.; Koksch B. Chem. Rev. 2019, 119(18), 10718.
[2]
(b) Zhou Y.; Wang J.; Gu Z. N.; Wang S. N.; Zhu W.; Acena J. L.; Soloshonok V. A.; Izawa K.; Liu H. Chem. Rev. 2016, 116(2), 422.
[2]
(c) Landelle G.; Panossian A.; Leroux F. R. Curr. Top Med. Chem. 2014, 14(7), 941.
[3]
(a) Qiu Y. F.; Zhu X. Y.; Li Y. X.; He Y. T.; Yang F.; Wang J.; Hua H. L.; Zheng L.; Wang L. C.; Liu X. Y.; Liang Y. M. Org. Lett. 2015, 17(15), 3694.
[3]
(b) Li Y.; Li L. J.; Yan Q. Q.; Ren Y. M.; Li X.; Liu Z. Q.; Li Z. J. Synlett 2022, 33(19), 1938.
[3]
(c) Wang L.; Xie L.; Fang Z. G.; Zhang Q.; Li D. Org. Chem. Front. 2022, 9(11), 3061.
[3]
(d) Liu K.; Jin Q.; Chen S.; Liu P. N. RSC Adv. 2017, 7(3), 1546.
[3]
(e) Jin D. P.; Gao P.; Chen D. Q.; Chen S.; Wang J.; Liu X. Y.; Liang Y. M. Org. Lett. 2016, 18(14), 3486.
[4]
(a) Zeng Y. F.; Tan D. H.; Chen Y. Y.; Lv W. X.; Liu X. G.; Li Q. J.; Wang H. G. Org. Chem. Front. 2015, 2(11), 1511.
[4]
(b) Zhang Z.; Fang X. S.; Aili A.; Wang S. L.; Tang J. H.; Lin W. J.; Xie L.; Chen J. C.; Sun K. Org. Lett. 2023.
[4]
(c) Pan S.; Huang Y. G.; Xu X. H.; Qing F. L. Org. Lett. 2017, 19(17), 4624.
[4]
(d) Shen L. Y.; Sun Y.; Wang Y. Q.; Li B.; Yang W. C.; Dai P. Tetrahedron 2022, 106, 132649.
[4]
(e) Yang W. C.; Zhang M. M.; Sun Y.; Chen C. Y.; Wang L. Org. Lett. 2021, 23(17), 6691.
[4]
(f) Lu Y. H.; Zhang Z. T.; Wu H. Y.; Zhou M. H.; Song H. Y.; Ji H. T.; Jiang J.; Chen J. Y.; He W. M. Chin. Chem. Lett. 2023, 34(7), 108036.
[4]
(g) Wang Z. W.; Liu Q. S.; Liu R. S.; Ji Z. Y.; Li Y.; Zhao X. H.; Wei W. Chin. Chem. Lett. 2022, 33(3), 1479.
[5]
Xiao Z. W.; Liu Y. A.; Zheng L. P.; Liu C.; Guo Y.; Chen Q. Y. J Org. Chem. 2018, 83(10), 5836.
[6]
Jia Y. M.; Qin H. M.; Wang N.; Jiang Z. X.; Yang Z. G. J. Org. Chem. 2018, 83(5), 2808.
[7]
Saravanan P.; Anbarasan P. Chem. Commun. 2019, 55(32), 4639.
[8]
He J.; Chen C. Y.; Fu G. C.; Peters J. C. ACS Catal. 2018, 8(12), 11741.
[9]
Li X. J.; Zhang Q.; Zhang W. G.; Ma J. Z.; Wang Y.; Pan Y. Beilstein J. Org. Chem. 2021, 17, 551.
[10]
Liu X. H.; Yu W.; Min L. J.; Wedge D. E.; Tan C. X.; Weng J. Q.; Wu H. K. J. Agric. Food Chem. 2020, 68, 7324.
[11]
Abad N.; Sallam H. H.; Al-Ostoot F. H.; Khamees H. A.; Al- horaibi S. A.; Sridhar M. A.; Khanum S. A.; Madegowda M.; El Hafi M.; Mague J. T.; Essassi E.; Ramli Y. J. Mol. Struct. 2021, 1232, 130004.
[12]
Wang S. L.; Ding J.; Jiang B.; Gao Y.; Tu S. J. ACS Comb. Sci. 2011, 13(5), 572.
[13]
(a) Qin X. Y.; Hao X.; Han H.; Zhu S. J.; Yang Y. C.; Wu B. B.; Hussain S.; Parveen S.; Jing C. J.; Ma B.; Zhu C. J. J. Med. Chem. 2015, 58(3), 1254.
[13]
(b) Khattab S. N.; Moneim S. A. H. A.; Bekhit A. A.; El Massry A. M.; Hassan S. Y.; El-Faham A.; Ahmed H. E. A.; Amer A. Eur. J. Med. Chem. 2015, 93, 308.
[13]
(c) Wu B. B.; Yang Y. C.; Qin X. Y.; Zhang S. Z.; Jing C. J.; Zhu C. J.; Ma B. ChemMedChem 2013, 8(12), 1913.
[14]
(a) Shen J. B.; He L.; Liang C. F.; Ouyang Y. N.; Yue X. G.; Wu H. F.; Xu J.; Liu X. G.; Zhu Q.; Zhang P. F. Mol. Catal. 2022, 524.
[14]
(b) Shen J. B.; Xu J.; Zhu Q.; Zhang P. F. Org. Biomol. Chem. 2021, 19(14), 3119.
[15]
(a) Dutta H. S.; Ahmad A.; Khan A. A.; Kumar M.; Raziullah; Koley, D. Adv. Synth. Catal. 2019, 361(24), 5534.
[15]
(b) Wang Z. W.; Liu Q. S.; Liu R. S.; Ji Z. Y.; Li Y.; Zhao X. H.; Wei W. Chin. Chem. Lett. 2022, 33(3), 1479.
[15]
(c) Lv Y. F.; Luo J. Y.; Lin M. Z.; Yue H. L.; Dai B.; He L. Org Chem. Front. 2021, 8(19), 5403.
[16]
Bhuyan M.; Sharma S.; Baishya G. Org. Biomol. Chem. 2022, 20(7), 1462.
[17]
(a) Zhou N. N.; Liu R. Y.; Zhang C. M.; Wang K.; Feng J. X.; Zhao X.; Lu K. Org. Lett. 2022, 24(19), 3576.
[17]
(b) Yuan Y. R.; Li L.; Bu X. B.; Wang X.; Sun R.; Zhou M. D.; Wang H. Asian J. Org. Chem. 2022, 11(5), e202200139.
[17]
(c) Yang X.; Meng W. D.; Xu X. H.; Huang Y. G. Y. Org. Chem. Front. 2021, 8(23), 6597.
[17]
(d) Meng N.; Lv Y. F.; Liu Q. S.; Liu R. S.; Zhao X. H.; Wei W. Chin. Chem. Lett. 2021, 32(1), 258.
[17]
(e) Meng N.; Wang L. L.; Liu Q. S.; Li Q. Y.; Lv Y. F.; Yue H. L.; Wang X. J.; Wei W. J. Org. Chem. 2020, 85(11), 6888.
[17]
(f) Zheng D. Q.; Studer A. Org. Lett. 2019, 21(1), 325.
[18]
Wu Y. C.; Zhang J.; Yu J. T.; Pan C. D. Adv. Synth. Catal. 2023, 365(5), 687.
[19]
Singh S.; Dagar N.; Pal G.; Roy S. R. Green Chem. 2022, 24(21), 8460.
文章导航

/