综述与进展

一氧化碳参与的过渡金属催化的插羰环加成反应研究进展

  • 李晨龙 ,
  • 余志祥
展开
  • 北京大学化学与分子工程学院 北京分子科学国家研究中心 生物有机与分子工程教育部重点实验室 北京 100871

收稿日期: 2023-10-05

  修回日期: 2023-11-28

  网络出版日期: 2023-12-08

基金资助

国家自然科学基金(21933003)

Progress in Transition-Metal-Catalyzed Carbonylative Cycloadditions Using Carbon Monoxide

  • Chen-Long Li ,
  • Zhi-Xiang Yu
Expand
  • Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871
* E-mail:

Received date: 2023-10-05

  Revised date: 2023-11-28

  Online published: 2023-12-08

Supported by

National Natural Science Foundation of China(21933003)

摘要

作为一种高效构建环状分子的方法, 环加成反应一直以来备受合成化学家的青睐. 一氧化碳(CO)气体是一种商业易得且廉价的原料, 常作为“一碳”组分参与各种过渡金属催化的环加成反应. 近几十年来, 得益于金属有机化学的深入研究, CO气体参与的过渡金属催化的环加成反应得到了迅速发展. 此类插羰环加成反应之所以成为有机化学的研究前沿, 是因为它们不仅可以用于构建复杂的环状骨架, 还可以引入具有广泛衍生化能力的羰基官能团. 这篇文章旨在详细介绍CO气体参与的过渡金属催化的插羰环加成反应, 并按照不同反应类型进行梳理和总结.

本文引用格式

李晨龙 , 余志祥 . 一氧化碳参与的过渡金属催化的插羰环加成反应研究进展[J]. 有机化学, 2024 , 44(4) : 1045 -1068 . DOI: 10.6023/cjoc202310003

Abstract

Transition-metal-catalyzed cycloadditions have been evolved as important and efficient methods to construct cyclic molecules. Among them, transition-metal-catalyzed cycloadditions using carbon monoxide (CO) gas as the 1C synthon provide their unique and powerful approaches to build various cyclic molecules within a carbonyl group, which either acts as an important functional group within the cycloadducts, or can be further elaborated to other functional groups. The tremendous advances in this field are introduced.

参考文献

[1]
Jiao L.; Yu Z.-X. J. Org. Chem. 2013, 78, 6842.
[2]
Gao Y.; Fu X.-F.; Yu Z.-X. Top. Curr. Chem. 2014, 346, 195.
[3]
Chen P.-H.; Billett B. A.; Tsukamoto T.; Dong G. ACS Catal. 2017, 7, 1340.
[4]
Fumagalli G.; Stanton S.; Bower J. F. Chem. Rev. 2017, 117, 9404.
[5]
Liu J.; Liu R.; Wei Y.; Shi M. Trends Chem. 2019, 1, 779.
[6]
Wang J.; Blaszczyk S. A.; Li X.; Tang W. Chem. Rev. 2021, 121, 110.
[7]
Zhang Q.; Kang J.; Wang Y. ChemCatChem 2010, 2, 1030.
[8]
Shahabuddin M.; Alam M. T.; Krishna B. B.; Thallada Bhaskar T.; Perkins G. Bioresour. Technol. 2020, 312, 123596.
[9]
dos Santos R. G.; Alencar A. C. Int. J. Hydrogen Energy 2020, 45, 18114.
[10]
Franke R.; Selent D.; B?rner A. Chem. Rev. 2012, 112, 5675.
[11]
Wu X.-F.; Fang X.; Wu L.; Jackstell R.; Neumann H.; Beller M. Acc. Chem. Res. 2014, 47, 1041.
[12]
Wu L.; Liu Q.; Jackstell R.; Bellerm M. Angew. Chem., Int. Ed. 2014, 53, 6310.
[13]
Yin Z.; Wang Z.; Wu X.-F. Chin. J. Org. Chem. 2019, 39, 573. (in Chinese)
[13]
(尹志平, 王泽超, 吴小锋, 有机化学, 2019, 39, 573.)
[14]
Feng T.; Du J.; Yan W.; Li X.; Gao W.; Chang H.; Wei W. Chin. J. Org. Chem. 2019, 39, 1197. (in Chinese)
[14]
(冯涛, 杜佳, 闫文静, 李兴, 高文超, 常宏宏, 魏文珑, 有机化学, 2019, 39, 1197.)
[15]
Wang P.; Yang D.; Liu H. Chin. J. Org. Chem. 2021, 41, 3448. (in Chinese)
[15]
(王鹏, 杨妲, 刘欢, 有机化学, 2021, 41, 3448.)
[16]
Wang Y.; Yu Z.-X. Acc. Chem. Res. 2015, 48, 2288.
[17]
Song W.; Blaszczyk S. A.; Liu J.; Wang S.; Tang W. Org. Biomol. Chem. 2017, 15, 7490.
[18]
Sato H.; Turnbull B. W. H.; Fukaya K.; Krische M. J. Angew. Chem., Int. Ed. 2018, 57, 3012.
[19]
Doerksen R. S.; Hodík T.; Hu G.; Huynh N. O.; Shuler W. G.; Krische M. J. Chem. Rev. 2021, 121, 4045.
[20]
Wang L.-N.; Yu Z.-X. Chin. J. Org. Chem. 2020, 40, 3536. (in Chinese)
[20]
(王路宁, 余志祥, 有机化学, 2020, 40, 3536.)
[21]
Trost B. M. Angew. Chem., Int. Ed. Engl. 1995, 90, 259.
[22]
Sheldon R. A. Pure Appl. Chem. 2000, 72, 1233.
[23]
Wender P. A.; Miller B. L. In Organic Synthesis: Theory & Applications, Vol. 2, Ed.: Hudlicky, T., JAI, Greenwich, 1993, p. 27.
[24]
Wender P. A.; Handy S. T.; Wright D. L. Chem. Ind. (Chichester, U. K.) 1997, 765.
[25]
Wender P. A.; Bi F. C.; Gamber G. G.; Gosselin F.; Hubbard R. D.; Scanio M. J. C.; Sun R.; Williams T. J.; Zhang L. Pure Appl. Chem. 2002, 74, 25.
[26]
Mondal K.; Halder P.; Gopalan G.; Sasikumar P.; Radhakrishnan K. V.; Das P. Org. Biomol. Chem. 2019, 17, 5212.
[27]
Hussain N.; Chhalodia A. K.; Ahmed A.; Mukherjee D. ChemistrySelect 2020, 5, 11272.
[28]
Chen Z.; Wang L.-C.; Wu X.-F. Chem. Commun. 2020, 56, 6016.
[29]
Khedkar M. V.; Khan S. R.; Lambat T. L.; Chaudhary R. G.; Abdala A. A. Curr. Org. Chem. 2020, 24, 2588.
[30]
Tan Y.; Lang J.; Tang M.; Li J.; Mi P.; Zheng X. ChemistrySelect 2021, 6, 2343.
[31]
Alcaide B.; Almendros P. Eur. J. Org. Chem. 2004, 2004, 3377.
[32]
Shibata T. Adv. Synth. Catal. 2006, 348, 2328.
[33]
Park J. H.; Chang K.-M.; Chung Y. K. Coord. Chem. Rev. 2009, 253, 2461.
[34]
Hanson B. E. Comments Inorg. Chem. 2002, 23, 289.
[35]
Kitagaki S.; Inagaki F.; Mukai C. Chem. Soc. Rev. 2014, 43, 2956.
[36]
Nakamura I.; Yamamoto Y. Chem. Rev. 2004, 104, 2127.
[37]
Vizer S. A.; Yerzhanov K. B.; Quntar A. A. A. A.; Dembitsky V. M. Tetrahedron 2004, 60, 5499.
[38]
Omae I. Coord. Chem. Rev. 2011, 255, 139.
[39]
Wender P. A.; Deschamps N. M.; Gamber G. G. Angew. Chem., Int. Ed. 2003, 42, 1853.
[40]
Wender P. A.; Deschamps N. M.; Williams T. J. Angew. Chem., Int. Ed. 2004, 43, 3076.
[41]
Wender P. A.; Croatt M. P.; Deschamps N. M. J. Am. Chem. Soc. 2004, 126, 5948.
[42]
Pitcock W. H. Jr.; Lord R. L.; Baik M.-H. J. Am. Chem. Soc. 2008, 130, 5821.
[43]
Croatt M. P.; Wender P. A. Eur. J. Org. Chem. 2010, 2010, 19.
[44]
Wender P. A.; Croatt M. P.; Deschamps N. M. Angew. Chem., Int. Ed. 2006, 45, 2459.
[45]
Yuan W.; Dong X.; Shi M.; McDowell P.; Li G. Org. Lett. 2012, 14, 5582.
[46]
Chen G.-Q.; Shi M. Chem. Commun. 2013, 49, 698.
[47]
Chen G.-Q.; Zhang X.-N.; Wei Y.; Tang X.-Y.; Shi M. Angew. Chem., Int. Ed. 2014, 53, 8492.
[48]
Chen G.-Q.; Tang X.-Y.; Shi M. Synlett 2014, 25, 2311.
[49]
Hoshimoto Y.; Ashida K.; Sasaoka Y.; Kumar R.; Kamikawa K.; Verdaguer X.; Riera A.; Ohashi M.; Ogoshi S. Angew. Chem., Int. Ed. 2017, 56, 8206.
[50]
Ashida K.; Hoshimoto Y.; Tohnai N.; Scott D. E.; Ohashi M.; Imaizumi H.; Tsuchiya Y.; Ogoshi S. J. Am. Chem. Soc. 2020, 142, 1594.
[51]
Ashida K.; Hoshimoto Y.; Ogoshi S. Synlett 2021, 32, 1537.
[52]
Suzuki N.; Kondo T.; Mitsudo T. Organometallics 1998, 17, 766.
[53]
Wang C.; Wu Y.-D. Organometallics 2008, 27, 6152.
[54]
Fukuyama T.; Yamaura R.; Higashibeppu Y.; Okamura T.; Ryu I.; Kondo T.; Mitsudo T. Org. Lett. 2005, 7, 5781.
[55]
Kondo T.; Kaneko Y.; Taguchi Y.; Nakamura A.; Okada T.; Shiotsuki M.; Ura Y.; Wada K.; Mitsudo T. J. Am. Chem. Soc. 2002, 124, 6824.
[56]
Huang Q.; Hua R. Chem.-Eur. J. 2007, 13, 8333.
[57]
Ojima I.; Lee S.-Y. J. Am. Chem. Soc. 2000, 122, 2385.
[58]
Bennacer B.; Fujiwara M.; Lee S.-Y.; Ojima I. J. Am. Chem. Soc. 2005, 127, 17756.
[59]
Bennacer B.; Fujiwara M.; Ojima I. Org. Lett. 2004, 6, 3589.
[60]
Kaloko J. J.; Teng Y.-H. G.; Ojima I. Chem. Commun. 2009, 4569.
[61]
Chien C.-W.; Teng Y.-H. G.; Honda T.; Ojima I. J. Org. Chem. 2018, 83, 11623.
[62]
Teng Y.-H. G.; Chien C.-W.; Chiou W.-H.; Honda T.; Ojima I. Front. Chem. 2018, 6, 401.
[63]
Salacz L.; Girard N.; Blond G.; Suffert J. Org. Lett. 2018, 20, 3915.
[64]
Salacz L.; Girard N.; Suffert J.; Blond G. Molecules 2019, 24, 595.
[65]
Church T. L.; Getzler Y. D. Y. L.; Byrne C. M.; Coates G. M. Chem. Commun. 2007, 657.
[66]
Ojima I.; Athan A.; Commandeur C.; Chiou W.-H. Amidocarbonylation, Cyclohydrocarbonylation, and Related Reactions, Elsevier Inc, Philadelphia, 2013.
[67]
Waser J. Top. Heterocycl. Chem. 2013, 32, 225.
[68]
Kramer J. W.; Rowley J. M.; Coates G. W. Org. React. 2015, 86, 1.
[69]
Couty F.; David O. R. P. Top. Heterocycl. Chem. 2016, 41, 1.
[70]
Kurahashi T.; de Meijere A. Angew. Chem., Int. Ed. 2005, 44, 7881.
[71]
Hidai M.; Orisaku M.; Uchida Y. Chem. Lett. 1980, 9, 753.
[72]
Xu W.-B.; Li C.; Wang J. Chem.-Eur. J. 2018, 24, 15786.
[73]
Fukuyama T.; Higashibeppu Y.; Yamaura R.; Ryu I. Org. Lett. 2007, 9, 587.
[74]
Koga Y.; Narasaka K. Chem. Lett. 1999, 28, 705.
[75]
Jiao L.; Lin M.; Zhuo L.-G.; Yu Z.-X. Org. Lett. 2010, 12, 2528.
[76]
Zhang G.-Y.; Lin M.; Yu Z.-X. Chem.-Asian J. 2023, 18, e202300032.
[77]
Feng Y.; Yu Z.-X. J. Org. Chem. 2015, 80, 1952.
[78]
Bose S.; Yang J.; Yu Z.-X. J. Org. Chem. 2016, 81, 6757.
[79]
Yang J.; Xu W.; Cui Q.; Fan X.; Wang L.-N.; Yu Z.-X. Org. Lett. 2017, 19, 6040.
[80]
Zhou Y.; Qin J.-L.; Xu W.; Yu Z.-X. Org. Lett. 2022, 24, 5902.
[81]
Wang J.; Hong B.; Hu D.; Kadonaga Y.; Tang R.; Lei X. J. Am. Chem. Soc. 2020, 142, 2238.
[82]
Li C.; Zhang H.; Feng J.; Zhang Y.; Wang J. Org. Lett. 2010, 12, 3082.
[83]
Lee S. l.; Park J. H.; Chung Y. K.; Lee S.-G. J. Am. Chem. Soc. 2004, 126, 2714.
[84]
Zhang W.; Zhang J. Org. Lett. 2011, 13, 688.
[85]
Liu B.-L.; Wei Y.; Shi M. Organometallics 2012, 31, 4601.
[86]
Mazumder S.; Shang D.; Negru D. E.; Baik M.-H.; Evans P. A. J. Am. Chem. Soc. 2012, 134, 20569.
[87]
Evans P. A.; Burnie A. J.; Negru D. E. Org. Lett. 2014, 16, 4356.
[88]
Kim S.; Chung Y. K. Org. Lett. 2014, 16, 4352.
[89]
Burnie A. J.; Evans P. A. Chem. Commun. 2018, 54, 7621.
[90]
Shaw M. H.; Melikhova E. Y.; Kloer D. P.; Whittingham W. G.; Bower J. F. J. Am. Chem. Soc. 2013, 135, 4992.
[91]
Shaw M. H.; McCreanor N. G.; Whittingham W. G.; Bower J. F. J. Am. Chem. Soc. 2015, 137, 463.
[92]
Shaw M. H.; Whittingham W. G.; Bower J. F. Tetrahedron 2016, 72, 2731.
[93]
Wang G.-W.; McCreanor N. G.; Shaw M. H.; Whittingham W. G.; Bower J. F. J. Am. Chem. Soc. 2016, 138, 13501.
[94]
Dalling A. G.; Yamauchi T.; McCreanor N. G.; Cox L.; Bower J. F. Angew. Chem., Int. Ed. 2019, 58, 221.
[95]
Sokolova O, O.; Bower, J. F. Angew. Chem., Int. Ed. 2022, 61, e202205007.
[96]
Eaton B. E.; Rollman B.; Kaduk J. A. J. Am. Chem. Soc. 1992, 114, 6245.
[97]
Sigman M. S.; Eaton B. E. J. Am. Chem. Soc. 1996, 118, 11783.
[98]
Sigman M. S.; Kerr C. E.; Eaton B. E. J. Am. Chem. Soc. 1993, 115, 7545.
[99]
Sigman M. S.; Eaton B. E.; Heise J. D.; Kubiak C. P. Organometallics 1996, 15, 2829.
[100]
Sigman M. S.; Eaton B. E. J. Org. Chem. 1994, 59, 7488.
[101]
Morimoto T.; Chatani N.; Murai S. J. Am. Chem. Soc. 1999, 121, 1758.
[102]
Heldeweg R. F.; Hogeveen H. J. Am. Chem. Soc. 1976, 98, 6040.
[103]
Matsuda T.; Tsuboi T.; Murakami M. J. Am. Chem. Soc. 2007, 129, 12596.
[104]
Matsuda T.; Fukuhara K.; Yonekubo N.; Oyama S. Chem. Lett. 2017, 46, 1721.
[105]
Murakami M.; Itami K.; Ito Y. Angew. Chem., Int. Ed. Engl. 1996, 34, 2691.
[106]
Murakami M.; Itami K.; Ito Y. Organometallics 1999, 18, 1326.
[107]
Murakami M.; Itami K.; Ito Y. J. Am. Chem. Soc. 1997, 119, 2950.
[108]
Murakami M.; Itami K.; Ito Y. J. Am. Chem. Soc. 1999, 121, 4130.
[109]
Meng Q.; Li M.; Zhang J. J. Mol. Struct.: THEOCHEM 2005, 726, 47.
[110]
Mazumder S.; Crandell D. W.; Lord R. L.; Baik M.-H. J. Am. Chem. Soc. 2014, 136, 9414.
[111]
Yang Y.; Li H.-X.; Zhu T.-Y.; Zhang Z.-Y.; Yu Z.-X. J. Am. Chem. Soc. 2023, 145, 17087.
[112]
Zhang Y.; Chen Z.; Xiao Y.; Zhang J. Chem.-Eur. J. 2009, 15, 5208.
[113]
Wang T.; Wang C.-H.; Zhang J. Chem. Commun. 2011, 47, 5578.
[114]
Fukuyama T.; Ohta Y.; Brancour C.; Miyagawa K.; Ryu I.; Dhimane A. L.; Fensterbank L.; Malacria M. Chem.-Eur. J. 2012, 18, 7243.
[115]
Coskun D.; Tüzün N. ?. J. Organomet. Chem. 2017, 851, 97.
[116]
Li X.; Huang S.; Schienebeck C. M.; Shu D.; Tang W. Org. Lett. 2012, 14, 1584.
[117]
Chen W.; Tay J.-H.; Yu X.-Q.; Pu L. J. Org. Chem. 2012, 77, 6215.
[118]
Zhang Y.; Zhao G.; Pu L. Eur. J. Org. Chem. 2017, 2017, 7026.
[119]
Yang J.; Zhang P.; Shen Z.; Zhou Y.; Yu Z.-X. Chem 2023, 9, 1477.
[120]
Yang J.; Zhang P.; Shen Z.; Yu Z.-X. Chem.-Eur. J. 2023, doi: 10.1002/chem.202303407.
[121]
Tian Z.-Y.; Cui Q.; Liu C.-H.; Yu Z.-X. Angew. Chem., Int. Ed. 2018, 57, 15544.
[122]
Yang Y.; Tian Z.-Y.; Li C.-L.; Yu Z.-X. J. Org. Chem. 2022, 87, 10576.
[123]
Cui Q.; Tian Z.-Y.; Yu Z.-X. Chem.-Eur. J. 2021, 27, 5638.
[124]
Li C.-L.; Yang Y.; Zhou Y.; Duan Z.-C.; Yu Z.-X. J. Am. Chem. Soc. 2023, 145, 5496.
[125]
Murakami M.; Itami K.; Ito Y. Angew. Chem., Int. Ed. 1998, 37, 3418.
[126]
Iwasuwa N.; Owada Y.; Matsuo T. Chem. Lett. 1995, 24, 115.
[127]
Owada Y.; Matsuo T.; Iwasuwa N. Tetrahedron 1997, 53, 11069.
[128]
Kurahashi T.; de Meijere A. Synlett 2005, 2005, 2619.
[129]
Liu C.-H.; Zhuang Z.; Bose S.; Yu Z.-X. Tetrahedron 2016, 72, 2752, and references therein.
[130]
Kamitani A.; Chatani N.; Morimoto T.; Murai S. J. Org. Chem. 2000, 65, 9230.
[131]
Cho S. H.; Liebeskind L. S. J. Org. Chem. 1987, 52, 2631.
[132]
Jiang G.-J.; Fu X.-F.; Li Q.; Yu Z.-X. Org. Lett. 2012, 14, 692.
[133]
Wang L.-N.; Cui Q.; Yu Z.-X. J. Org. Chem. 2016, 81, 10165.
[134]
Liu C.-H.; Yu Z.-X. Org. Biomol. Chem. 2016, 14, 5945.
[135]
Zhuang Z.; Li C.-L.; Xiang Y.; Wang Y.-H.; Yu Z.-X. Chem. Commun. 2017, 53, 2158.
[136]
Lin M.; Li F.; Jiao L.; Yu Z.-X. J. Am. Chem. Soc. 2011, 133, 1690.
[137]
Brancour C.; Fukuyama T.; Ohta Y.; Ryu I.; Dhimane A.-L.; Fensterbank L.; Malacria M. Chem. Commun. 2010, 46, 5470.
[138]
Schienebeck C. M.; Song W.; Smits A. M.; Tang W. Synthesis 2015, 47, 1076.
[139]
Ke X.-N.; Schienebeck C. M.; Zhou C.-C.; Xu X.-F.; Tang W.-P. Chin. Chem. Lett. 2015, 26, 730.
[140]
Shu D.; Li X.; Zhang M.; Robichaux P. J.; Tang W. Angew. Chem., Int. Ed. 2011, 50, 1346.
[141]
Shu D.; Li X.; Zhang M.; Robichaux P. J.; Guzei I. A.; Tang W. J. Org. Chem. 2012, 77, 6463.
[142]
Zhang M.; Tang W. Org. Lett. 2012, 14, 3756.
[143]
Li X.; Xie H.; Fu X.; Liu J.-T.; Wang H.-Y.; Xi B.-M.; Liu P.; Xu X.; Tang W. Chem.-Eur. J. 2016, 22, 10410.
[144]
Liu J.-T.; Simmons C. J.; Xie H.; Yang F.; Zhao X.-L.; Tang Y.; Tang W. Adv. Synth. Catal. 2017, 359, 693.
[145]
Li X.; Song W.; Tang W. J. Am. Chem. Soc. 2013, 135, 16797.
[146]
Song W.; Li X.; Yang K.; Zhao X.-L.; Glazier D. A.; Xi B.-M.; Tang W. J. Org. Chem. 2016, 81, 2930.
[147]
Fontana F.; Tron G. C.; Barbero N.; Ferrini S.; Thomas S. P.; Aggarwal V. K. Chem. Commun. 2010, 46, 267.
[148]
Murakami M.; Itami K.; Ubukata M.; Tsuji I.; Ito Y. J. Org. Chem. 1998, 63, 4.
[149]
Wender P. A.; Gamber G. G.; Hubbard R. D.; Zhang L. J. Am. Chem. Soc. 2002, 124, 2876.
[150]
Wegner H. A.; de Meijere A.; Wender P. A. J. Am. Chem. Soc. 2005, 127, 6530.
[151]
Wang Y.; Wang J.; Su J.; Huang F.; Jiao L.; Liang Y.; Yang D.; Zhang S.; Wender P. A.; Yu Z.-X. J. Am. Chem. Soc. 2007, 129, 10060.
[152]
Wang Y.; Liao W.; Wang Y.; Jiao L.; Yu Z.-X. J. Am. Chem. Soc. 2022, 144, 2624.
[153]
Jiao L.; Yuan C.; Yu Z.-X. J. Am. Chem. Soc. 2008, 130, 4421.
[154]
Yuan C.; Jiao L.; Yu Z.-X. Tetrahedron Lett. 2010, 51, 5674.
[155]
Fan X.; Tang M.-X.; Zhuo L.-G.; Tu Y. Q.; Yu Z.-X. Tetrahedron Lett. 2009, 50, 155.
[156]
Fan X.; Zhuo L.-G.; Tu Y. Q.; Yu Z.-X. Tetrahedron 2009, 65, 4709.
[157]
Liang Y.; Jiang X.; Yu Z.-X. Chem. Commun. 2011, 47, 6659.
[158]
Liang Y.; Jiang X.; Fu X.-F.; Ye S.; Wang T.; Yuan J.; Wang Y.; Yu Z.-X. Chem.-Asian J. 2012, 7, 593.
[159]
Huang F.; Yao Z.-K.; Wang Y.; Wang Y.; Zhang J.; Yu Z.-X. Chem.-Asian J. 2010, 5, 1555.
[160]
Liu J.; Zhou Y.; Zhu J.; Yu Z.-X. Org. Lett. 2021, 23, 7566.
[161]
Liu J.; Zhou Y.; Yu Z.-X. Org. Lett. 2022, 24, 1444.
[162]
Wang L.-N.; Huang Z.; Yu Z.-X. Cell Rep. Phys. Sci. 2023, 4, 101302.
[163]
Wang L.-N.; Huang Z.; Yu Z.-X. Org. Lett. 2023, 25, 1732.
[164]
Wender P. A.; Gamber G. G.; Hubbard R. D.; Pham S. M.; Zhang L. J. Am. Chem. Soc. 2005, 127, 2836.
[165]
Mbaezue I. I.; Ylijoki K. E. O. Organometallics 2017, 36, 2832.
[166]
Wender P. A.; Deschamps N. M.; Sun R. Angew. Chem., Int. Ed. 2006, 45, 3957.
[167]
Kim S. Y.; Lee S. I.; Choi S. Y.; Chung Y. K. Angew. Chem., Int. Ed. 2008, 47, 4914.
[168]
McCreanor N. G.; Stanton S.; Bower J. F. J. Am. Chem. Soc. 2016, 138, 11465.
[169]
Wang G.-W.; Sokolova O. O.; Young T. A.; Christodoulou E. M. S.; Butts C. P.; Bower J. F. J. Am. Chem. Soc. 2020, 142, 19006.
[170]
Wang G.-W.; Bower J. F. J. Am. Chem. Soc. 2018, 140, 2743.
[171]
Li C.-L.; Yang Y.; Zhou Y.; Yu Z.-X. Asian J. Org. Chem. 2022, 11, e202100571.
[172]
Yao Z.-K.; Li J.; Yu Z.-X. Org. Lett. 2011, 13, 134.
[173]
Fu X.-F.; Xiang Y.; Yu Z.-X. Chem.-Eur. J. 2015, 21, 4242.
[174]
Huang Z.; Wang X.; Jin Y.; Wang Z.; Yu Z.-X. Org. Lett. 2023, 25, 8829.
[175]
Shaw M. H.; Croft R. A.; Whittingham W. G.; Bower J. F. J. Am. Chem. Soc. 2015, 137, 8054.
[176]
Lv S.; Xu Y.; Li J. Tetrahedron 2018, 74, 6475.
[177]
Boyd O.; Wang G.-W.; Sokolova O. O.; Calow A. D. J.; Bertrand S. M.; Bower J. F. Angew. Chem., Int. Ed. 2019, 58, 18844.
[178]
Wang G.-W.; Boyd O.; Young T. A.; Bertrand S. M.; Bower J. F. J. Am. Chem. Soc. 2020, 142, 1740.
[179]
Wu X.; Wang C.; Liu N.; Qu J.; Chen Y. Nat. Commun. 2023, 14, 6960.
[180]
Yan M.; Kawamata Y.; Baran P. S. Chem. Rev. 2017, 117, 13230.
[181]
Wiebe A.; Gieshoff T.; M?hle S.; Rodrigo E.; Zirbes M.; Wald- vogel S. R. Angew. Chem., Int. Ed. 2018, 57, 5594.
[182]
M?hle S.; Zirbes M.; Rodrigo E.; Gieshoff T.; Wiebe A.; Wald- vogel S. R. Angew. Chem., Int. Ed. 2018, 57, 6018.
[183]
Novaes L. F. T.; Liu J.; Shen Y.; Lu L.; Meinhardt J. M.; Lin S. Chem. Soc. Rev. 2021, 50, 7941.
[184]
Goddard J.-P.; Ollivier C.; Fensterbank L. Acc. Chem. Res. 2016, 49, 1924.
[185]
Staveness D.; Bosque I.; Stephenson C. R. J. Acc. Chem. Res. 2016, 49, 2295.
[186]
Shaw M. H.; Twilton J.; MacMillan D. W. C. J. Org. Chem. 2016, 81, 6898.
[187]
Strieth-Kalthoff F.; James M. J.; Teders M.; Pitzer L.; Glorius F. Chem. Soc. Rev. 2018, 47, 7190.
[188]
Swords W. B.; Yoon T. P. In Specialist Periodical Reports: Photochemistry, Vol. 50, Eds.: Crespi, S.; Protti, S., Royal Society of Chemistry, Corydon, 2023, p. 428.
文章导航

/