一氧化碳参与的过渡金属催化的插羰环加成反应研究进展
收稿日期: 2023-10-05
修回日期: 2023-11-28
网络出版日期: 2023-12-08
基金资助
国家自然科学基金(21933003)
Progress in Transition-Metal-Catalyzed Carbonylative Cycloadditions Using Carbon Monoxide
Received date: 2023-10-05
Revised date: 2023-11-28
Online published: 2023-12-08
Supported by
National Natural Science Foundation of China(21933003)
作为一种高效构建环状分子的方法, 环加成反应一直以来备受合成化学家的青睐. 一氧化碳(CO)气体是一种商业易得且廉价的原料, 常作为“一碳”组分参与各种过渡金属催化的环加成反应. 近几十年来, 得益于金属有机化学的深入研究, CO气体参与的过渡金属催化的环加成反应得到了迅速发展. 此类插羰环加成反应之所以成为有机化学的研究前沿, 是因为它们不仅可以用于构建复杂的环状骨架, 还可以引入具有广泛衍生化能力的羰基官能团. 这篇文章旨在详细介绍CO气体参与的过渡金属催化的插羰环加成反应, 并按照不同反应类型进行梳理和总结.
关键词: 环状分子; 一氧化碳(CO)气体; 过渡金属催化; 插羰反应; 环加成反应
李晨龙 , 余志祥 . 一氧化碳参与的过渡金属催化的插羰环加成反应研究进展[J]. 有机化学, 2024 , 44(4) : 1045 -1068 . DOI: 10.6023/cjoc202310003
Transition-metal-catalyzed cycloadditions have been evolved as important and efficient methods to construct cyclic molecules. Among them, transition-metal-catalyzed cycloadditions using carbon monoxide (CO) gas as the 1C synthon provide their unique and powerful approaches to build various cyclic molecules within a carbonyl group, which either acts as an important functional group within the cycloadducts, or can be further elaborated to other functional groups. The tremendous advances in this field are introduced.
| [1] | Jiao L.; Yu Z.-X. J. Org. Chem. 2013, 78, 6842. |
| [2] | Gao Y.; Fu X.-F.; Yu Z.-X. Top. Curr. Chem. 2014, 346, 195. |
| [3] | Chen P.-H.; Billett B. A.; Tsukamoto T.; Dong G. ACS Catal. 2017, 7, 1340. |
| [4] | Fumagalli G.; Stanton S.; Bower J. F. Chem. Rev. 2017, 117, 9404. |
| [5] | Liu J.; Liu R.; Wei Y.; Shi M. Trends Chem. 2019, 1, 779. |
| [6] | Wang J.; Blaszczyk S. A.; Li X.; Tang W. Chem. Rev. 2021, 121, 110. |
| [7] | Zhang Q.; Kang J.; Wang Y. ChemCatChem 2010, 2, 1030. |
| [8] | Shahabuddin M.; Alam M. T.; Krishna B. B.; Thallada Bhaskar T.; Perkins G. Bioresour. Technol. 2020, 312, 123596. |
| [9] | dos Santos R. G.; Alencar A. C. Int. J. Hydrogen Energy 2020, 45, 18114. |
| [10] | Franke R.; Selent D.; B?rner A. Chem. Rev. 2012, 112, 5675. |
| [11] | Wu X.-F.; Fang X.; Wu L.; Jackstell R.; Neumann H.; Beller M. Acc. Chem. Res. 2014, 47, 1041. |
| [12] | Wu L.; Liu Q.; Jackstell R.; Bellerm M. Angew. Chem., Int. Ed. 2014, 53, 6310. |
| [13] | Yin Z.; Wang Z.; Wu X.-F. Chin. J. Org. Chem. 2019, 39, 573. (in Chinese) |
| [13] | (尹志平, 王泽超, 吴小锋, 有机化学, 2019, 39, 573.) |
| [14] | Feng T.; Du J.; Yan W.; Li X.; Gao W.; Chang H.; Wei W. Chin. J. Org. Chem. 2019, 39, 1197. (in Chinese) |
| [14] | (冯涛, 杜佳, 闫文静, 李兴, 高文超, 常宏宏, 魏文珑, 有机化学, 2019, 39, 1197.) |
| [15] | Wang P.; Yang D.; Liu H. Chin. J. Org. Chem. 2021, 41, 3448. (in Chinese) |
| [15] | (王鹏, 杨妲, 刘欢, 有机化学, 2021, 41, 3448.) |
| [16] | Wang Y.; Yu Z.-X. Acc. Chem. Res. 2015, 48, 2288. |
| [17] | Song W.; Blaszczyk S. A.; Liu J.; Wang S.; Tang W. Org. Biomol. Chem. 2017, 15, 7490. |
| [18] | Sato H.; Turnbull B. W. H.; Fukaya K.; Krische M. J. Angew. Chem., Int. Ed. 2018, 57, 3012. |
| [19] | Doerksen R. S.; Hodík T.; Hu G.; Huynh N. O.; Shuler W. G.; Krische M. J. Chem. Rev. 2021, 121, 4045. |
| [20] | Wang L.-N.; Yu Z.-X. Chin. J. Org. Chem. 2020, 40, 3536. (in Chinese) |
| [20] | (王路宁, 余志祥, 有机化学, 2020, 40, 3536.) |
| [21] | Trost B. M. Angew. Chem., Int. Ed. Engl. 1995, 90, 259. |
| [22] | Sheldon R. A. Pure Appl. Chem. 2000, 72, 1233. |
| [23] | Wender P. A.; Miller B. L. In Organic Synthesis: Theory & Applications, Vol. 2, Ed.: Hudlicky, T., JAI, Greenwich, 1993, p. 27. |
| [24] | Wender P. A.; Handy S. T.; Wright D. L. Chem. Ind. (Chichester, U. K.) 1997, 765. |
| [25] | Wender P. A.; Bi F. C.; Gamber G. G.; Gosselin F.; Hubbard R. D.; Scanio M. J. C.; Sun R.; Williams T. J.; Zhang L. Pure Appl. Chem. 2002, 74, 25. |
| [26] | Mondal K.; Halder P.; Gopalan G.; Sasikumar P.; Radhakrishnan K. V.; Das P. Org. Biomol. Chem. 2019, 17, 5212. |
| [27] | Hussain N.; Chhalodia A. K.; Ahmed A.; Mukherjee D. ChemistrySelect 2020, 5, 11272. |
| [28] | Chen Z.; Wang L.-C.; Wu X.-F. Chem. Commun. 2020, 56, 6016. |
| [29] | Khedkar M. V.; Khan S. R.; Lambat T. L.; Chaudhary R. G.; Abdala A. A. Curr. Org. Chem. 2020, 24, 2588. |
| [30] | Tan Y.; Lang J.; Tang M.; Li J.; Mi P.; Zheng X. ChemistrySelect 2021, 6, 2343. |
| [31] | Alcaide B.; Almendros P. Eur. J. Org. Chem. 2004, 2004, 3377. |
| [32] | Shibata T. Adv. Synth. Catal. 2006, 348, 2328. |
| [33] | Park J. H.; Chang K.-M.; Chung Y. K. Coord. Chem. Rev. 2009, 253, 2461. |
| [34] | Hanson B. E. Comments Inorg. Chem. 2002, 23, 289. |
| [35] | Kitagaki S.; Inagaki F.; Mukai C. Chem. Soc. Rev. 2014, 43, 2956. |
| [36] | Nakamura I.; Yamamoto Y. Chem. Rev. 2004, 104, 2127. |
| [37] | Vizer S. A.; Yerzhanov K. B.; Quntar A. A. A. A.; Dembitsky V. M. Tetrahedron 2004, 60, 5499. |
| [38] | Omae I. Coord. Chem. Rev. 2011, 255, 139. |
| [39] | Wender P. A.; Deschamps N. M.; Gamber G. G. Angew. Chem., Int. Ed. 2003, 42, 1853. |
| [40] | Wender P. A.; Deschamps N. M.; Williams T. J. Angew. Chem., Int. Ed. 2004, 43, 3076. |
| [41] | Wender P. A.; Croatt M. P.; Deschamps N. M. J. Am. Chem. Soc. 2004, 126, 5948. |
| [42] | Pitcock W. H. Jr.; Lord R. L.; Baik M.-H. J. Am. Chem. Soc. 2008, 130, 5821. |
| [43] | Croatt M. P.; Wender P. A. Eur. J. Org. Chem. 2010, 2010, 19. |
| [44] | Wender P. A.; Croatt M. P.; Deschamps N. M. Angew. Chem., Int. Ed. 2006, 45, 2459. |
| [45] | Yuan W.; Dong X.; Shi M.; McDowell P.; Li G. Org. Lett. 2012, 14, 5582. |
| [46] | Chen G.-Q.; Shi M. Chem. Commun. 2013, 49, 698. |
| [47] | Chen G.-Q.; Zhang X.-N.; Wei Y.; Tang X.-Y.; Shi M. Angew. Chem., Int. Ed. 2014, 53, 8492. |
| [48] | Chen G.-Q.; Tang X.-Y.; Shi M. Synlett 2014, 25, 2311. |
| [49] | Hoshimoto Y.; Ashida K.; Sasaoka Y.; Kumar R.; Kamikawa K.; Verdaguer X.; Riera A.; Ohashi M.; Ogoshi S. Angew. Chem., Int. Ed. 2017, 56, 8206. |
| [50] | Ashida K.; Hoshimoto Y.; Tohnai N.; Scott D. E.; Ohashi M.; Imaizumi H.; Tsuchiya Y.; Ogoshi S. J. Am. Chem. Soc. 2020, 142, 1594. |
| [51] | Ashida K.; Hoshimoto Y.; Ogoshi S. Synlett 2021, 32, 1537. |
| [52] | Suzuki N.; Kondo T.; Mitsudo T. Organometallics 1998, 17, 766. |
| [53] | Wang C.; Wu Y.-D. Organometallics 2008, 27, 6152. |
| [54] | Fukuyama T.; Yamaura R.; Higashibeppu Y.; Okamura T.; Ryu I.; Kondo T.; Mitsudo T. Org. Lett. 2005, 7, 5781. |
| [55] | Kondo T.; Kaneko Y.; Taguchi Y.; Nakamura A.; Okada T.; Shiotsuki M.; Ura Y.; Wada K.; Mitsudo T. J. Am. Chem. Soc. 2002, 124, 6824. |
| [56] | Huang Q.; Hua R. Chem.-Eur. J. 2007, 13, 8333. |
| [57] | Ojima I.; Lee S.-Y. J. Am. Chem. Soc. 2000, 122, 2385. |
| [58] | Bennacer B.; Fujiwara M.; Lee S.-Y.; Ojima I. J. Am. Chem. Soc. 2005, 127, 17756. |
| [59] | Bennacer B.; Fujiwara M.; Ojima I. Org. Lett. 2004, 6, 3589. |
| [60] | Kaloko J. J.; Teng Y.-H. G.; Ojima I. Chem. Commun. 2009, 4569. |
| [61] | Chien C.-W.; Teng Y.-H. G.; Honda T.; Ojima I. J. Org. Chem. 2018, 83, 11623. |
| [62] | Teng Y.-H. G.; Chien C.-W.; Chiou W.-H.; Honda T.; Ojima I. Front. Chem. 2018, 6, 401. |
| [63] | Salacz L.; Girard N.; Blond G.; Suffert J. Org. Lett. 2018, 20, 3915. |
| [64] | Salacz L.; Girard N.; Suffert J.; Blond G. Molecules 2019, 24, 595. |
| [65] | Church T. L.; Getzler Y. D. Y. L.; Byrne C. M.; Coates G. M. Chem. Commun. 2007, 657. |
| [66] | Ojima I.; Athan A.; Commandeur C.; Chiou W.-H. Amidocarbonylation, Cyclohydrocarbonylation, and Related Reactions, Elsevier Inc, Philadelphia, 2013. |
| [67] | Waser J. Top. Heterocycl. Chem. 2013, 32, 225. |
| [68] | Kramer J. W.; Rowley J. M.; Coates G. W. Org. React. 2015, 86, 1. |
| [69] | Couty F.; David O. R. P. Top. Heterocycl. Chem. 2016, 41, 1. |
| [70] | Kurahashi T.; de Meijere A. Angew. Chem., Int. Ed. 2005, 44, 7881. |
| [71] | Hidai M.; Orisaku M.; Uchida Y. Chem. Lett. 1980, 9, 753. |
| [72] | Xu W.-B.; Li C.; Wang J. Chem.-Eur. J. 2018, 24, 15786. |
| [73] | Fukuyama T.; Higashibeppu Y.; Yamaura R.; Ryu I. Org. Lett. 2007, 9, 587. |
| [74] | Koga Y.; Narasaka K. Chem. Lett. 1999, 28, 705. |
| [75] | Jiao L.; Lin M.; Zhuo L.-G.; Yu Z.-X. Org. Lett. 2010, 12, 2528. |
| [76] | Zhang G.-Y.; Lin M.; Yu Z.-X. Chem.-Asian J. 2023, 18, e202300032. |
| [77] | Feng Y.; Yu Z.-X. J. Org. Chem. 2015, 80, 1952. |
| [78] | Bose S.; Yang J.; Yu Z.-X. J. Org. Chem. 2016, 81, 6757. |
| [79] | Yang J.; Xu W.; Cui Q.; Fan X.; Wang L.-N.; Yu Z.-X. Org. Lett. 2017, 19, 6040. |
| [80] | Zhou Y.; Qin J.-L.; Xu W.; Yu Z.-X. Org. Lett. 2022, 24, 5902. |
| [81] | Wang J.; Hong B.; Hu D.; Kadonaga Y.; Tang R.; Lei X. J. Am. Chem. Soc. 2020, 142, 2238. |
| [82] | Li C.; Zhang H.; Feng J.; Zhang Y.; Wang J. Org. Lett. 2010, 12, 3082. |
| [83] | Lee S. l.; Park J. H.; Chung Y. K.; Lee S.-G. J. Am. Chem. Soc. 2004, 126, 2714. |
| [84] | Zhang W.; Zhang J. Org. Lett. 2011, 13, 688. |
| [85] | Liu B.-L.; Wei Y.; Shi M. Organometallics 2012, 31, 4601. |
| [86] | Mazumder S.; Shang D.; Negru D. E.; Baik M.-H.; Evans P. A. J. Am. Chem. Soc. 2012, 134, 20569. |
| [87] | Evans P. A.; Burnie A. J.; Negru D. E. Org. Lett. 2014, 16, 4356. |
| [88] | Kim S.; Chung Y. K. Org. Lett. 2014, 16, 4352. |
| [89] | Burnie A. J.; Evans P. A. Chem. Commun. 2018, 54, 7621. |
| [90] | Shaw M. H.; Melikhova E. Y.; Kloer D. P.; Whittingham W. G.; Bower J. F. J. Am. Chem. Soc. 2013, 135, 4992. |
| [91] | Shaw M. H.; McCreanor N. G.; Whittingham W. G.; Bower J. F. J. Am. Chem. Soc. 2015, 137, 463. |
| [92] | Shaw M. H.; Whittingham W. G.; Bower J. F. Tetrahedron 2016, 72, 2731. |
| [93] | Wang G.-W.; McCreanor N. G.; Shaw M. H.; Whittingham W. G.; Bower J. F. J. Am. Chem. Soc. 2016, 138, 13501. |
| [94] | Dalling A. G.; Yamauchi T.; McCreanor N. G.; Cox L.; Bower J. F. Angew. Chem., Int. Ed. 2019, 58, 221. |
| [95] | Sokolova O, O.; Bower, J. F. Angew. Chem., Int. Ed. 2022, 61, e202205007. |
| [96] | Eaton B. E.; Rollman B.; Kaduk J. A. J. Am. Chem. Soc. 1992, 114, 6245. |
| [97] | Sigman M. S.; Eaton B. E. J. Am. Chem. Soc. 1996, 118, 11783. |
| [98] | Sigman M. S.; Kerr C. E.; Eaton B. E. J. Am. Chem. Soc. 1993, 115, 7545. |
| [99] | Sigman M. S.; Eaton B. E.; Heise J. D.; Kubiak C. P. Organometallics 1996, 15, 2829. |
| [100] | Sigman M. S.; Eaton B. E. J. Org. Chem. 1994, 59, 7488. |
| [101] | Morimoto T.; Chatani N.; Murai S. J. Am. Chem. Soc. 1999, 121, 1758. |
| [102] | Heldeweg R. F.; Hogeveen H. J. Am. Chem. Soc. 1976, 98, 6040. |
| [103] | Matsuda T.; Tsuboi T.; Murakami M. J. Am. Chem. Soc. 2007, 129, 12596. |
| [104] | Matsuda T.; Fukuhara K.; Yonekubo N.; Oyama S. Chem. Lett. 2017, 46, 1721. |
| [105] | Murakami M.; Itami K.; Ito Y. Angew. Chem., Int. Ed. Engl. 1996, 34, 2691. |
| [106] | Murakami M.; Itami K.; Ito Y. Organometallics 1999, 18, 1326. |
| [107] | Murakami M.; Itami K.; Ito Y. J. Am. Chem. Soc. 1997, 119, 2950. |
| [108] | Murakami M.; Itami K.; Ito Y. J. Am. Chem. Soc. 1999, 121, 4130. |
| [109] | Meng Q.; Li M.; Zhang J. J. Mol. Struct.: THEOCHEM 2005, 726, 47. |
| [110] | Mazumder S.; Crandell D. W.; Lord R. L.; Baik M.-H. J. Am. Chem. Soc. 2014, 136, 9414. |
| [111] | Yang Y.; Li H.-X.; Zhu T.-Y.; Zhang Z.-Y.; Yu Z.-X. J. Am. Chem. Soc. 2023, 145, 17087. |
| [112] | Zhang Y.; Chen Z.; Xiao Y.; Zhang J. Chem.-Eur. J. 2009, 15, 5208. |
| [113] | Wang T.; Wang C.-H.; Zhang J. Chem. Commun. 2011, 47, 5578. |
| [114] | Fukuyama T.; Ohta Y.; Brancour C.; Miyagawa K.; Ryu I.; Dhimane A. L.; Fensterbank L.; Malacria M. Chem.-Eur. J. 2012, 18, 7243. |
| [115] | Coskun D.; Tüzün N. ?. J. Organomet. Chem. 2017, 851, 97. |
| [116] | Li X.; Huang S.; Schienebeck C. M.; Shu D.; Tang W. Org. Lett. 2012, 14, 1584. |
| [117] | Chen W.; Tay J.-H.; Yu X.-Q.; Pu L. J. Org. Chem. 2012, 77, 6215. |
| [118] | Zhang Y.; Zhao G.; Pu L. Eur. J. Org. Chem. 2017, 2017, 7026. |
| [119] | Yang J.; Zhang P.; Shen Z.; Zhou Y.; Yu Z.-X. Chem 2023, 9, 1477. |
| [120] | Yang J.; Zhang P.; Shen Z.; Yu Z.-X. Chem.-Eur. J. 2023, doi: 10.1002/chem.202303407. |
| [121] | Tian Z.-Y.; Cui Q.; Liu C.-H.; Yu Z.-X. Angew. Chem., Int. Ed. 2018, 57, 15544. |
| [122] | Yang Y.; Tian Z.-Y.; Li C.-L.; Yu Z.-X. J. Org. Chem. 2022, 87, 10576. |
| [123] | Cui Q.; Tian Z.-Y.; Yu Z.-X. Chem.-Eur. J. 2021, 27, 5638. |
| [124] | Li C.-L.; Yang Y.; Zhou Y.; Duan Z.-C.; Yu Z.-X. J. Am. Chem. Soc. 2023, 145, 5496. |
| [125] | Murakami M.; Itami K.; Ito Y. Angew. Chem., Int. Ed. 1998, 37, 3418. |
| [126] | Iwasuwa N.; Owada Y.; Matsuo T. Chem. Lett. 1995, 24, 115. |
| [127] | Owada Y.; Matsuo T.; Iwasuwa N. Tetrahedron 1997, 53, 11069. |
| [128] | Kurahashi T.; de Meijere A. Synlett 2005, 2005, 2619. |
| [129] | Liu C.-H.; Zhuang Z.; Bose S.; Yu Z.-X. Tetrahedron 2016, 72, 2752, and references therein. |
| [130] | Kamitani A.; Chatani N.; Morimoto T.; Murai S. J. Org. Chem. 2000, 65, 9230. |
| [131] | Cho S. H.; Liebeskind L. S. J. Org. Chem. 1987, 52, 2631. |
| [132] | Jiang G.-J.; Fu X.-F.; Li Q.; Yu Z.-X. Org. Lett. 2012, 14, 692. |
| [133] | Wang L.-N.; Cui Q.; Yu Z.-X. J. Org. Chem. 2016, 81, 10165. |
| [134] | Liu C.-H.; Yu Z.-X. Org. Biomol. Chem. 2016, 14, 5945. |
| [135] | Zhuang Z.; Li C.-L.; Xiang Y.; Wang Y.-H.; Yu Z.-X. Chem. Commun. 2017, 53, 2158. |
| [136] | Lin M.; Li F.; Jiao L.; Yu Z.-X. J. Am. Chem. Soc. 2011, 133, 1690. |
| [137] | Brancour C.; Fukuyama T.; Ohta Y.; Ryu I.; Dhimane A.-L.; Fensterbank L.; Malacria M. Chem. Commun. 2010, 46, 5470. |
| [138] | Schienebeck C. M.; Song W.; Smits A. M.; Tang W. Synthesis 2015, 47, 1076. |
| [139] | Ke X.-N.; Schienebeck C. M.; Zhou C.-C.; Xu X.-F.; Tang W.-P. Chin. Chem. Lett. 2015, 26, 730. |
| [140] | Shu D.; Li X.; Zhang M.; Robichaux P. J.; Tang W. Angew. Chem., Int. Ed. 2011, 50, 1346. |
| [141] | Shu D.; Li X.; Zhang M.; Robichaux P. J.; Guzei I. A.; Tang W. J. Org. Chem. 2012, 77, 6463. |
| [142] | Zhang M.; Tang W. Org. Lett. 2012, 14, 3756. |
| [143] | Li X.; Xie H.; Fu X.; Liu J.-T.; Wang H.-Y.; Xi B.-M.; Liu P.; Xu X.; Tang W. Chem.-Eur. J. 2016, 22, 10410. |
| [144] | Liu J.-T.; Simmons C. J.; Xie H.; Yang F.; Zhao X.-L.; Tang Y.; Tang W. Adv. Synth. Catal. 2017, 359, 693. |
| [145] | Li X.; Song W.; Tang W. J. Am. Chem. Soc. 2013, 135, 16797. |
| [146] | Song W.; Li X.; Yang K.; Zhao X.-L.; Glazier D. A.; Xi B.-M.; Tang W. J. Org. Chem. 2016, 81, 2930. |
| [147] | Fontana F.; Tron G. C.; Barbero N.; Ferrini S.; Thomas S. P.; Aggarwal V. K. Chem. Commun. 2010, 46, 267. |
| [148] | Murakami M.; Itami K.; Ubukata M.; Tsuji I.; Ito Y. J. Org. Chem. 1998, 63, 4. |
| [149] | Wender P. A.; Gamber G. G.; Hubbard R. D.; Zhang L. J. Am. Chem. Soc. 2002, 124, 2876. |
| [150] | Wegner H. A.; de Meijere A.; Wender P. A. J. Am. Chem. Soc. 2005, 127, 6530. |
| [151] | Wang Y.; Wang J.; Su J.; Huang F.; Jiao L.; Liang Y.; Yang D.; Zhang S.; Wender P. A.; Yu Z.-X. J. Am. Chem. Soc. 2007, 129, 10060. |
| [152] | Wang Y.; Liao W.; Wang Y.; Jiao L.; Yu Z.-X. J. Am. Chem. Soc. 2022, 144, 2624. |
| [153] | Jiao L.; Yuan C.; Yu Z.-X. J. Am. Chem. Soc. 2008, 130, 4421. |
| [154] | Yuan C.; Jiao L.; Yu Z.-X. Tetrahedron Lett. 2010, 51, 5674. |
| [155] | Fan X.; Tang M.-X.; Zhuo L.-G.; Tu Y. Q.; Yu Z.-X. Tetrahedron Lett. 2009, 50, 155. |
| [156] | Fan X.; Zhuo L.-G.; Tu Y. Q.; Yu Z.-X. Tetrahedron 2009, 65, 4709. |
| [157] | Liang Y.; Jiang X.; Yu Z.-X. Chem. Commun. 2011, 47, 6659. |
| [158] | Liang Y.; Jiang X.; Fu X.-F.; Ye S.; Wang T.; Yuan J.; Wang Y.; Yu Z.-X. Chem.-Asian J. 2012, 7, 593. |
| [159] | Huang F.; Yao Z.-K.; Wang Y.; Wang Y.; Zhang J.; Yu Z.-X. Chem.-Asian J. 2010, 5, 1555. |
| [160] | Liu J.; Zhou Y.; Zhu J.; Yu Z.-X. Org. Lett. 2021, 23, 7566. |
| [161] | Liu J.; Zhou Y.; Yu Z.-X. Org. Lett. 2022, 24, 1444. |
| [162] | Wang L.-N.; Huang Z.; Yu Z.-X. Cell Rep. Phys. Sci. 2023, 4, 101302. |
| [163] | Wang L.-N.; Huang Z.; Yu Z.-X. Org. Lett. 2023, 25, 1732. |
| [164] | Wender P. A.; Gamber G. G.; Hubbard R. D.; Pham S. M.; Zhang L. J. Am. Chem. Soc. 2005, 127, 2836. |
| [165] | Mbaezue I. I.; Ylijoki K. E. O. Organometallics 2017, 36, 2832. |
| [166] | Wender P. A.; Deschamps N. M.; Sun R. Angew. Chem., Int. Ed. 2006, 45, 3957. |
| [167] | Kim S. Y.; Lee S. I.; Choi S. Y.; Chung Y. K. Angew. Chem., Int. Ed. 2008, 47, 4914. |
| [168] | McCreanor N. G.; Stanton S.; Bower J. F. J. Am. Chem. Soc. 2016, 138, 11465. |
| [169] | Wang G.-W.; Sokolova O. O.; Young T. A.; Christodoulou E. M. S.; Butts C. P.; Bower J. F. J. Am. Chem. Soc. 2020, 142, 19006. |
| [170] | Wang G.-W.; Bower J. F. J. Am. Chem. Soc. 2018, 140, 2743. |
| [171] | Li C.-L.; Yang Y.; Zhou Y.; Yu Z.-X. Asian J. Org. Chem. 2022, 11, e202100571. |
| [172] | Yao Z.-K.; Li J.; Yu Z.-X. Org. Lett. 2011, 13, 134. |
| [173] | Fu X.-F.; Xiang Y.; Yu Z.-X. Chem.-Eur. J. 2015, 21, 4242. |
| [174] | Huang Z.; Wang X.; Jin Y.; Wang Z.; Yu Z.-X. Org. Lett. 2023, 25, 8829. |
| [175] | Shaw M. H.; Croft R. A.; Whittingham W. G.; Bower J. F. J. Am. Chem. Soc. 2015, 137, 8054. |
| [176] | Lv S.; Xu Y.; Li J. Tetrahedron 2018, 74, 6475. |
| [177] | Boyd O.; Wang G.-W.; Sokolova O. O.; Calow A. D. J.; Bertrand S. M.; Bower J. F. Angew. Chem., Int. Ed. 2019, 58, 18844. |
| [178] | Wang G.-W.; Boyd O.; Young T. A.; Bertrand S. M.; Bower J. F. J. Am. Chem. Soc. 2020, 142, 1740. |
| [179] | Wu X.; Wang C.; Liu N.; Qu J.; Chen Y. Nat. Commun. 2023, 14, 6960. |
| [180] | Yan M.; Kawamata Y.; Baran P. S. Chem. Rev. 2017, 117, 13230. |
| [181] | Wiebe A.; Gieshoff T.; M?hle S.; Rodrigo E.; Zirbes M.; Wald- vogel S. R. Angew. Chem., Int. Ed. 2018, 57, 5594. |
| [182] | M?hle S.; Zirbes M.; Rodrigo E.; Gieshoff T.; Wiebe A.; Wald- vogel S. R. Angew. Chem., Int. Ed. 2018, 57, 6018. |
| [183] | Novaes L. F. T.; Liu J.; Shen Y.; Lu L.; Meinhardt J. M.; Lin S. Chem. Soc. Rev. 2021, 50, 7941. |
| [184] | Goddard J.-P.; Ollivier C.; Fensterbank L. Acc. Chem. Res. 2016, 49, 1924. |
| [185] | Staveness D.; Bosque I.; Stephenson C. R. J. Acc. Chem. Res. 2016, 49, 2295. |
| [186] | Shaw M. H.; Twilton J.; MacMillan D. W. C. J. Org. Chem. 2016, 81, 6898. |
| [187] | Strieth-Kalthoff F.; James M. J.; Teders M.; Pitzer L.; Glorius F. Chem. Soc. Rev. 2018, 47, 7190. |
| [188] | Swords W. B.; Yoon T. P. In Specialist Periodical Reports: Photochemistry, Vol. 50, Eds.: Crespi, S.; Protti, S., Royal Society of Chemistry, Corydon, 2023, p. 428. |
/
| 〈 |
|
〉 |