综述与进展

噻唑类化合物的合成研究进展

  • 张雅芳 ,
  • 黄轩 ,
  • 林琪 ,
  • 钟海琼 ,
  • 翁志强 ,
  • 吴伟
展开
  • a 闽江学院材料与化学工程学院 福州 350108
    b 闽江学院 福建省中国漆新型材料工程研究中心 福州 350108
    c 闽江学院 绿色材料与化工福建省高校工程研究中心 福州 350108

收稿日期: 2023-10-07

  修回日期: 2023-11-26

  网络出版日期: 2023-12-21

基金资助

国家自然科学基金(22171124); 国家自然科学基金(22301118); 福建省自然科学基金(2022J05233); 闽江学院(MJY21041)

Recent Progress in the Synthesis of Thiazole-Containing Compounds

  • Yafang Zhang ,
  • Xuan Huang ,
  • Qi Lin ,
  • Haiqiong Zhong ,
  • Zhiqiang Weng ,
  • Wei Wu
Expand
  • a College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108
    b Fujian Engineering Research Center of New Chinese Lacquer Materials, Minjiang University, Fuzhou 350108
    c Fujian Provincial University Engineering Research Center of Green Materials and Chemical Engineering, Minjiang University, Fuzhou 350108

Received date: 2023-10-07

  Revised date: 2023-11-26

  Online published: 2023-12-21

Supported by

National Natural Science Foundation of China(22171124); National Natural Science Foundation of China(22301118); Natural Science Foundation of Fujian Province(2022J05233); Minjiang University(MJY21041)

摘要

噻唑环是含氮、硫杂原子的五元芳杂环, 广泛存在于药物、天然产物和功能材料中, 目前已有很多关于合成噻唑化合物的研究报道. 本综述聚焦于介绍制备噻唑环的合成方法以及这些合成方法的底物适用范围, 希望能够帮助其他研究者高效地合成和应用噻唑化合物.

本文引用格式

张雅芳 , 黄轩 , 林琪 , 钟海琼 , 翁志强 , 吴伟 . 噻唑类化合物的合成研究进展[J]. 有机化学, 2024 , 44(5) : 1458 -1479 . DOI: 10.6023/cjoc202310007

Abstract

Thiazole is a five-membered aromatic heterocycle containing nitrogen and sulfur heteroatoms, which is widely found in drugs, natural products and functional materials. So far, there have been many reports on the synthesis of thiazole compounds. This review focuses on the synthetic methods for the preparation of thiazole rings and the scope of application of these synthetic methods, which can be used as a reference for other researchers to efficiently synthesize and apply thiazole compounds.

参考文献

[1]
Khatik, L. G.; Datusalia, K. A.; Ahsan, W.; Kaur, P.; Vyas, M.; Mittal, A.; Nayak, K. S. Curr. Drug Discovery Technol. 2018, 15, 163.
[2]
Shahin, I. G.; Abutaleb, N. S.; Alhashimi, M.; Kassab, A. E.; Mohamed, K. O.; Taher, A. T.; Seleem, M. N.; Mayhoub, A. S. Eur. J. Med. Chem. 2020, 202, 112497.
[3]
Makam, P.; Kankanala, R.; Prakash, A.; Kannan, T. Eur. J. Med. Chem. 2013, 69, 564.
[4]
Reddy, G. M.; Garcia, J. R.; Reddy, V. H.; de Andrade, A. M.; Camilo, A.; Pontes Ribeiro, R. A.; de Lazaro, S. R. Eur. J. Med. Chem. 2016, 123, 508.
[5]
Li, M.; Xia, D.-G.; Wang, Y.-X.; Cheng, X.; Gong, J.-X.; Chen, Y.; Lü, X.-H. Chin. J. Org. Chem. 2023, 43, 686 (in Chinese).
[5]
( 李猛, 夏东国, 王云霄, 程祥, 巩杰秀, 陈耀, 吕献海, 有机化学, 2023, 43, 686.)
[6]
Dawood, K. M.; Eldebss, T. M. A.; El-Zahabi, H. S. A.; Yousef, M. H. Eur. J. Med. Chem. 2015, 102, 266.
[7]
Helal, M. H. M.; Salem, M. A.; El-Gaby, M. S. A.; Aljahdali, M. Eur. J. Med. Chem. 2013, 65, 517.
[8]
Abbas, E. M. H.; Gomha, S. M.; Farghaly, T. A.; Abdalla, M. M. Curr. Org. Synth. 2016, 13, 456.
[9]
Zhao, X. J.; Chen, X. H. Chin. J. Pharm. 2006, 37, 441 (in Chinese).
[9]
( 赵晓娟; 陈学恒, 中国医药工业杂志, 2006, 37, 441.)
[10]
Hutchinson, I.; Bradshaw, T. D.; Matthews, C. S.; Stevens, M. F. G.; Westwell, A. D. Bioorg. Med. Chem. Lett. 2003, 13, 471.
[11]
Chen, B.-C.; Zhao, R.; Wang, B.; Droghini, R.; Lajeunesse, J.; Sirard, P.; Endo, M.; Balasubramanian, B.; Barrish, J. C. ARKIVOC 2009, 32.
[12]
Cai, W.-X.; Liu, A.-L.; Li, Z.-M.; Dong, W.-L.; Liu, X.-H.; Sun, N.-B. Appl. Sci. 2016, 6, 8.
[13]
Jeankumar, V. U.; Renuka, J.; Santosh, P.; Soni, V.; Sridevi, J. P.; Suryadevara, P.; Yogeeswari, P.; Sriram, D. Eur. J. Med. Chem. 2013, 70, 143.
[14]
Yang, Z.-H.; Chen, A.-Y.; Hu, A.-X.; Ye, J. Chin. J. Org. Chem. 2017, 37, 149 (in Chinese).
[14]
( 杨子辉, 陈爱羽, 胡艾希, 叶姣, 有机化学, 2017, 37, 149.)
[15]
Chen, S.; Shao, Y.-Y.; Fu, X.-H.; Chen, Q.-W.; Du, X.-H.; Tan, C.-X. Chin. J. Org. Chem. 2022, 42, 3870 (in Chinese).
[15]
( 陈澍, 邵莹莹, 付欣豪, 陈庆悟, 杜晓华, 谭成侠, 有机化学, 2022, 42, 3870.)
[16]
Cui, S. F.; Wang, Y.; Lv, J. S.; Damu, G. L. V.; Zhou, C. H. Sci. China Chem. 2012, 42, 1105 (in Chinese).
[16]
( 崔胜峰, 王艳, 吕敬松, DAMU, Guri L. V., 周成合, 中国科学: 化学, 2012, 42, 1105.)
[17]
Ji, M.; Dong, C.; Guo, Q.; Du, M.; Guo, Q.; Sun, X.; Wang, E.; Zhou, E. Macromol. Rapid Commun. 2023, 44, 2300102.
[18]
Yang, K.; Chen, Z.; Wang, Y.; Guo, X. Acc. Mater. Res. 2023, 4, 237.
[19]
Hantzsch, A.; Weber, J. H. Ber. Dtsch. Chem. Ges. 1887, 20, 3118.
[20]
Sahil; Kaur, K.; Jaitak, V. Curr. Med. Chem. 2022, 29, 4958.
[21]
Duc, X. D.; Chung, T. N. Curr. Org. Synth. 2022, 19, 702.
[22]
Niu, Z.-X.; Wang, Y.-T.; Zhang, S.-N.; Li, Y.; Chen, X.-B.; Wang, S.-Q.; Liu, H.-M. Eur. J. Med. Chem. 2023, 250, 115172.
[23]
Shahin, G. I.; Mohamed, O. K.; Taher, T. A.; Mayhoub, S. A.; Kassab, E. A. Mini-Rev. Org. Chem. 2023, 20, 270.
[24]
Sharma, S.; Devgun, M.; Narang, R.; Lal, S.; Rana, A. C. Indian J. Pharm. Educ. Res. 2022, 56, 646.
[25]
Goff, D.; Fernandez, J. Tetrahedron Lett. 1999, 40, 423.
[26]
Miller, T. J.; Farquar, H. D.; Sheybani, A.; Tallini, C. E.; Saurage, A. S.; Fronczek, F. R.; Hammer, R. P. Org. Lett. 2002, 4, 877.
[27]
Ueno, M.; Togo, H. Synthesis 2004, 2004, 2673.
[28]
Narender, M.; Reddy, M. S.; Sridhar, R.; Nageswar, Y. V. D.; Rao, K. R. Tetrahedron Lett. 2005, 46, 5953.
[29]
Das, B.; Saidi Reddy, V.; Ramu, R. J. Mol. Catal. A: Chem. 2006, 252, 235.
[30]
Noei, J.; Khosropour, A. R. Ultrason. Sonochem. 2009, 16, 711.
[31]
Li, Y.; Ma, L.-F.; Wang, X.-J.; Lei, B.-W.; Zhao, Y.; Yang, J.-Y.; Li, Z.-Y. Chin. J. Org. Chem. 2017, 37, 1213 (in Chinese).
[31]
( 李瑶, 马丽芳, 王晓姣, 雷搏文, 赵怡, 杨嘉宇, 李子元, 有机化学, 2017, 37, 1213.)
[32]
Heravi, M. M.; Poormohammad, N.; Beheshtiha, Y. S.; Baghernejad, B. Synth. Commun. 2011, 41, 579.
[33]
Gao, W.-T.; Lan, S.; Zheng, H.-M.; Bairenqing, Z.-M. Chin. J. Org. Chem. 2015, 35, 144 (in Chinese).
[33]
( 高文涛, 兰帅, 郑宏梅, 白仁青卓玛, 有机化学, 2015, 35, 144.)
[34]
Arunkumar, K.; Naresh Kumar Reddy, D.; Chandrasekhar, K. B.; Rajender Kumar, P.; Shiva Kumar, K.; Pal, M. Tetrahedron Lett. 2012, 53, 3885.
[35]
Xiao, J.; Li, W.; Zhou, X.-Q.; Liu, D.-Z. Chem. Ind. Eng. 2011, 28, 30 (in Chinese).
[35]
( 肖捷, 李巍, 周雪琴, 刘东志, 化学工业与工程, 2011, 28, 30.)
[36]
Kesari, C.; Rama, K. R.; Sedighi, K.; Stenvang, J.; Bj?rkling, F.; Kankala, S.; Thota, N. Synth. Commun. 2021, 51, 1406.
[37]
Azizi, N.; Rahimi, Z.; Alipour, M. C. R. Chim. 2015, 18, 626.
[38]
Ziyaei Halimehjani, A.; Hasani, L.; Ali Alaei, M.; Saidi, M. R. Tetrahedron Lett. 2016, 57, 883.
[39]
Zhang, X.; Teo, W. T.; Sally; Chan, P. W. H. J. Org. Chem. 2010, 75, 6290.
[40]
Wu, G.-D.; Wang, X.-L.; Zhang, L.-M.; Zhang, F.; Liu, X.-F.; Liu, C.-R. Chin. J. Org. Chem. 2015, 35, 2537 (in Chinese).
[40]
( 吴功德, 王晓丽, Liming Zhang, 张方, 刘献锋, 刘从容, 有机化学, 2015, 35, 2537.)
[41]
Obijalska, E.; B?aszczyk, M.; Kowalski, M. K.; Mlostoń, G.; Heimgartner, H. J. Fluorine Chem. 2019, 220, 35.
[42]
Shaterian, H. R.; Molaei, P. Appl. Organomet. Chem. 2019, 33, e4964.
[43]
Narender, M.; Somi Reddy, M.; Kumar, V. P.; Srinivas, B.; Sridhar, R.; Nageswar, Y. V. D.; Rao, K. R. Synthesis 2007, 2007, 3469.
[44]
Kuarm, B. S.; Madhav, J. V.; Rajitha, B.; Rajitha, B. Lett. Org. Chem. 2011, 8, 549.
[45]
Vekariya, R. H.; Patel, K. D.; Vekariya, M. K.; Prajapati, N. P.; Rajani, D. P.; Rajani, S. D.; Patel, H. D. Res. Chem. Intermed. 2017, 43, 6207.
[46]
Zheng, R.; Hu, X.; Jiang, H.; Guo, H.; Wang, L. Synthesis 2023, 55, 2091.
[47]
Yadav, J. S.; Reddy, B. V. S.; Rao, Y. G.; Narsaiah, A. V. Tetrahedron Lett. 2008, 49, 2381.
[48]
Babu, B. H.; Vijay, K.; Murali Krishna, K. B.; Sharmila, N.; Ramana, M. B. J. Chem. Sci. 2016, 128, 1475.
[49]
Lin, P.-Y.; Hou, R.-S.; Wang, H.-M.; Kang, I.-J.; Chen, L.-C. J. Chin. Chem. Soc. 2009, 56, 455.
[50]
Meshram, H. M.; Kumar, D. A.; Vara Prasad, B. R. Synth. Commun. 2009, 39, 2317.
[51]
Qin, X.; Yu, H. B.; Dai, H.; Qin, Z. F.; Zhang, X.; Bing, G. F.; Wang, T. T.; Fang, J. X. Chin. Chem. Lett. 2010, 21, 283.
[52]
Zhao, X.; Geng, Q.-F.; Zhou, T.-H.; Gao, X.-H.; Liu, G. Chin. Chem. Lett. 2013, 24, 31.
[53]
Chen, Y.; Lv, S.; Lai, R.; Xu, Y.; Huang, X.; Li, J.; Lv, G.; Wu, Y. Chin. Chem. Lett. 2021, 32, 2555.
[54]
Zhu, Y.-P.; Yuan, J.-J.; Zhao, Q.; Lian, M.; Gao, Q.-H.; Liu, M.-C.; Yang, Y.; Wu, A.-X. Tetrahedron 2012, 68, 173.
[55]
Xue, W.-J.; Zheng, K.-L.; Li, H.-Z.; Gao, F.-F.; Wu, A.-X. Tetrahedron Lett. 2014, 55, 4212.
[56]
Ghodse, S. M.; Telvekar, V. N. Tetrahedron Lett. 2015, 56, 472.
[57]
Safari, J.; Abedi-Jazini, Z.; Zarnegar, Z.; Sadeghi, M. Catal. Commun. 2016, 77, 108.
[58]
Madhav, B.; Narayana Murthy, S.; Anil Kumar, B. S. P.; Ramesh, K.; Nageswar, Y. V. D. Tetrahedron Lett. 2012, 53, 3835.
[59]
Aggarwal, R.; Kumar, S.; Singh, S. P. J. Sulfur Chem. 2012, 33, 521.
[60]
Ablajan, K.; Liju, W.; Tuoheti, A. Lett. Org. Chem. 2013, 10, 715.
[61]
de Moraes Gomes, P. A. T.; de Oliveira Barbosa, M.; Farias Santiago, E.; de Oliveira Cardoso, M. V.; Capistrano Costa, N. T.; Hernandes, M. Z.; Moreira, D. R. M.; da Silva, A. C.; dos Santos, T. A. R.; Pereira, V. R. A.; Brayner dos Santosd, F. A.; do Nascimento Pereira, G. A.; Ferreira, R. S.; Leite, A. C. L. Eur. J. Med. Chem. 2016, 121, 387.
[62]
Nikpassand, M.; Zare Fekri, L.; Sanagou, S. Dyes Pigm. 2017, 136, 140.
[63]
Mekky, A. E. M.; Sanad, S. M. H.; El-Idreesy, T. T. Synth. Commun. 2021, 51, 3332.
[64]
Khanoussi, S.; Benmohammed, A.; Khoumeri, O.; Kadiri, M.; Djafri, A.; Terme, T.; Vanelle, P. Lett. Org. Chem. 2023, 20, 11.
[65]
Alqahtani, A. M.; Bayazeed, A. A. Arab. J. Chem. 2021, 14, 102914.
[66]
Brandsma, L.; De Jong, R. L. P.; Verkruijsse, H. D. Synthesis 1985, 1985, 948.
[67]
Kodomari, M.; Aoyama, T.; Suzuki, Y. Tetrahedron Lett. 2002, 43, 1717.
[68]
Aoyama, T.; Murata, S.; Arai, I.; Araki, N.; Takido, T.; Suzuki, Y.; Kodomari, M. Tetrahedron 2006, 62, 3201.
[69]
Khidre, R. E.; Radini, I. A. M. Sci. Rep. 2021, 11, 7846.
[70]
Yang, H.; Chen, Y.; Xu, X.; Li, Z. Synlett 2022, 34, 176.
[71]
Banert, K.; Al-Hourani, B. J.; Groth, S.; Vrobel, K. Synthesis 2005, 2005, 2920.
[72]
Sasmal, P. K.; Chandrasekhar, A.; Sridhar, S.; Iqbal, J. Tetrahedron 2008, 64, 11074.
[73]
Yavari, I.; Amirahmadi, A.; Halvagar, M. R. Synlett 2017, 28, 2629.
[74]
Guo, W.; Zhao, M.; Tan, W.; Zheng, L.; Tao, K.; Chen, L.; Wang, M.; Chen, D.; Fan, X. Asian J. Org. Chem. 2018, 7, 1893.
[75]
Lingaraju, G. S.; Swaroop, T. R.; Vinayaka, A. C.; Sharath Kumar, K. S.; Sadashiva, M. P.; Rangappa, K. S. Synthesis 2012, 44, 1373.
[76]
Rajeev, N.; Swaroop, T. R.; Anil, S. M.; Bommegowda, Y. K.; Rangappa, K. S.; Sadashiva, M. P. Synlett 2017, 28, 2281.
[77]
Kiran, K. R.; Swaroop, T. R.; Rajeev, N.; Anil, S. M.; Rangappa, K. S.; Sadashiva, M. P. Synthesis 2020, 52, 1444.
[78]
Miura, T.; Funakoshi, Y.; Fujimoto, Y.; Nakahashi, J.; Murakami, M. Org. Lett. 2015, 17, 2454.
[79]
Sheldrake, P. W.; Matteucci, M.; McDonald, E. Synlett 2006, 2006, 460.
[80]
Bao, X.-F.; Qiao, X.-J.; Hou, X.; Fang, W.-H.; Liu, X.-L.; Chen, G.-L. J. Braz. Chem. Soc. 2016, 27, 2388.
[81]
Sanz-Cervera, J. F.; Blasco, R.; Piera, J.; Cynamon, M.; Ibá?ez, I.; Murguía, M.; Fustero, S. J. Org. Chem. 2009, 74, 8988.
[82]
Kumar, S. V.; Parameshwarappa, G.; Ila, H. J. Org. Chem. 2013, 78, 7362.
[83]
Wu, M.; Jiang, Y.; An, Z.; Qi, Z.; Yan, R. Adv. Synth. Catal. 2018, 360, 4236.
[84]
Wang, X.; Qiu, X.; Wei, J.; Liu, J.; Song, S.; Wang, W.; Jiao, N. Org. Lett. 2018, 20, 2632.
[85]
Jiang, J.; Huang, H.; Deng, G.-J. Green Chem. 2019, 21, 986.
[86]
Chen, L.; Xuchen, X.; Wang, F.; Yang, Y.; Deng, G.; Liu, Y.; Liang, Y. Org. Biomol. Chem. 2021, 19, 10068.
[87]
Kim, D.; Baek, D. J.; Lee, D.; Liu, K.-H.; Bae, J.-S.; Gong, Y.-D.; Min, K. H.; Lee, T. Tetrahedron 2015, 71, 3367.
[88]
Yao, Y.; Lin, B.; Wu, M.; Zhang, Y.; Huang, Y.; Han, X.; Weng, Z. Org. Biomol. Chem. 2022, 20, 8761.
[89]
Pavlik, J. W.; Pandit, C. R.; Samuel, C. J.; Day, A. C. J. Org. Chem. 1993, 58, 3407.
[90]
Carradori, S.; Rotili, D.; De Monte, C.; Lenoci, A.; D'Ascenzio, M.; Rodriguez, V.; Filetici, P.; Miceli, M.; Nebbioso, A.; Altucci, L.; Secci, D.; Mai, A. Eur. J. Med. Chem. 2014, 80, 569.
文章导航

/