综述与进展

2,7-二芳基取代芴/芴酮的合成

  • 李永清 ,
  • 彭雨晴 ,
  • 曹育才 ,
  • 曹贵平
展开
  • a 华东理工大学 化学工程联合国家重点实验室 上海 200237
    b 上海化工研究院有限公司 聚烯烃催化技术与高性能材料国家重点实验室 上海市聚烯烃催化技术重点实验 上海 200062

收稿日期: 2023-11-07

  修回日期: 2023-12-11

  网络出版日期: 2023-12-21

基金资助

上海市青年科技启明星计划(22QB1402800)

Synthesis of 2,7-Diaryl Substituted Fluorenes and Fluorenones

  • Yongqing Li ,
  • Yuqing Peng ,
  • Yucai Cao ,
  • Guiping Cao
Expand
  • a State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237
    b State Key Laboratory of Polyolefins and Catalysis, Shanghai Key Laboratory of Catalysis Technology for Polyolefins, Shanghai Research Institute of Chemical Industry Co. Ltd., Shanghai 200062

Received date: 2023-11-07

  Revised date: 2023-12-11

  Online published: 2023-12-21

Supported by

Shanghai Rising-Star Program(22QB1402800)

摘要

2,7-二芳基取代芴/芴酮及其衍生物在有机半导体材料、化学传感器和茂金属催化剂等领域广泛应用. 传统合成方法难以满足多样性分子结构和性能调控的需求, 而Pd和Ni催化的芳基-芳基交叉偶联反应则成为制备2,7-二芳基取代芴/芴酮的高效手段, 带有膦配体和N-杂环卡宾配体等多种类型的金属催化剂得到应用. 综述了2,7-二芳基取代芴酮、9-无取代2,7-二芳基取代芴和9-取代2,7-二芳基取代芴三种类型化合物的合成方法及各种Pd和Ni配合物的使用条件. 总结了目前各种合成方法面临的挑战, 并展望了可能的解决方案.

本文引用格式

李永清 , 彭雨晴 , 曹育才 , 曹贵平 . 2,7-二芳基取代芴/芴酮的合成[J]. 有机化学, 2024 , 44(5) : 1494 -1505 . DOI: 10.6023/cjoc202311008

Abstract

2,7-Diaryl substituted fluorenes and fluorenones are widely used in fields of organic semiconductor, chemosensor, and metallocene catalysis. Traditional synthesis methods can not meet the requirements of flexible molecular structures and regulation of diverse properties. Aryl-aryl cross coupling reactions based on the catalysis of Pd and Ni complexes have become efficient methods for the preparation of 2,7-diaryl substituted fluorenes and fluorenones. Various types of metal catalysts with phosphine ligands and N-heterocyclic carbene ligands have been applied. The synthetic methods of 2,7-diaryl substituted fluorenones and 2,7-diaryl substituted fluorenes with or without 9-substitutions, and the conditions for the application of Pd and Ni complexes are reviewed. The challenges of various synthetic methods at present are summarized and a brief outlook on possible solutions is provided.

参考文献

[1]
Rizzo, F.; Polo, F.; Bottaro, G.; Fantacci, S.; Antonello, S.; Armelao, L.; Quici, S.; Maran, F. J. Am. Chem. Soc. 2017, 139, 2060.
[2]
Du, X.; Xu, F.; Yuan, M.-S.; Xue, P.; Zhao, L.; Wang, D.-E.; Wang, W.; Tu, Q.; Chen, S.-W.; Wang, J. J. Mater. Chem. C 2016, 4, 8724.
[3]
Huo, Y. P.; Fang, X. M.; Huang, B. H.; Zhang, K.; Nie, X. L.; Zeng, H. P. Chin. J. Org. Chem. 2012, 32, 1169 (in Chinese).
[3]
( 霍延平, 方小明, 黄宝华, 张焜, 聂晓李, 曾和平, 有机化学, 2012, 32, 1169.)
[4]
Liu, D.; De, J.; Gao, H.; Ma, S.; Ou, Q.; Li, S.; Qin, Z.; Dong, H.; Liao, Q.; Xu, B.; Peng, Q.; Shuai, Z.; Tian, W.; Fu, H.; Zhang, X.; Zhen, Y.; Hu, W. J. Am. Chem. Soc. 2020, 142, 6332.
[5]
Kobin, B.; Bianchi, F.; Halm, S.; Leistner, J.; Blumstengel, S.; Henneberger, F.; Hecht, S. Adv. Funct. Mater. 2014, 24, 7717.
[6]
Lin, H.-Y.; Sher, C.-W.; Lin, C.-H.; Tu, H.-H.; Chen, X. Y.; Lai, Y.-C.; Lin, C.-C.; Chen, H.-M.; Yu, P.; Meng, H.-F.; Chi, G.-C.; Honjo, K.; Chen, T.-M.; Kuo, H.-C. ACS Appl. Mater. Inter. 2017, 9, 35279.
[7]
Watanabe, K.; Sakamoto, T.; Taguchi, M.; Fujiki, M.; Nakano, T. Chem. Commun. 2011, 47, 10996.
[8]
Kim, Y. G.; Shaik, B.; Jang, Y. J.; Park, S. Y.; Kim, J. Y.; Lee, S.-G. J. Nanosci. Nanotechnol. 2016, 16, 2979.
[9]
Liu, D.; Liao, Q.; Peng, Q.; Gao, H.; Sun, Q.; De, J.; Gao, C.; Miao, Z.; Qin, Z.; Yang, J.; Fu, H.; Shuai, Z.; Dong, H.; Hu, W. Angew. Chem., Int. Ed. 2021, 60, 20274.
[10]
Liu, D.; Wu, X.; Gao, C.; Li, C.; Zheng, Y.; Li, Y.; Xie, Z.; Ji, D.; Liu, X.; Zhang, X.; Li, L.; Peng, Q.; Hu, W.; Dong, H. Angew. Chem., Int. Ed. 2022, 61, e202200791.
[11]
Locklin, J.; Ling, M. M.; Sung, A.; Roberts, M. E.; Bao, Z. Adv. Mater. 2006, 18, 2989.
[12]
Vaitukaityte, D.; Magomedov, A.; Rakstys, K.; Kwiatkowski, S.; Kamarauskas, E.; Jankauskas, V.; Rousseau, J.; Getautis, V. RSC Adv. 2023, 13, 26933.
[13]
Krucaite, G.; Beresneviciute, R.; Tavgeniene, D.; Grigalevicius, S.; Zhang, B.; Gruodis, A.; Chernyakova, K.; Karpicz, R. Opt. Mater. 2021, 119, 111345.
[14]
Du, X.; Su, H.; Zhao, L.; Xing, X.; Wang, B.; Qiu, D.; Wang, J.; Yuan, M.-S. Mater. Chem. Front. 2021, 5, 7508.
[15]
Duan, Y.; Ju, C.; Yang, G.; Fron, E.; Coutino-Gonzalez, E.; Semin, S.; Fan, C.; Balok, R. S.; Cremers, J.; Tinnemans, P.; Feng, Y.; Li, Y.; Hofkens, J.; Rowan, A. E.; Rasing, T.; Xu, J. Adv. Funct. Mater. 2016, 26, 8968.
[16]
Li, X.; Guan, J.; Hao, C.; Yu, Z.; Zheng, J. Chin. J. Chem. Phys. 2021, 34, 867.
[17]
Turelli, M.; Ciofini, I.; Wang, Q.; Ottochian, A.; Labat, F.; Adamo, C. Phys. Chem. Chem. Phys. 2023, 25, 17769.
[18]
Cheng, J.; Liu, Z.; Wang, D.; Chen, K.; You, Y.; Zhou, X. Appl. Organomet. Chem. 2019, 33, e5168.
[19]
Han, Y.; Zhao, J.; Yang, H.; Huang, X.; Zhou, X.; Hui, T.; Yan, J. J. Mol. Struct. 2020, 1217, 128395.
[20]
Tahir Waseem, M.; Muhammad Junaid, H.; Gul, H.; Ali Khan, Z.; Yu, C.; Anjum Shahzad, S. J. Photochem. Photobiol., A 2022, 425, 113660.
[21]
Yemam, H. A.; Mahl, A.; Tinkham, J. S.; Koubek, J. T.; Greife, U.; Sellinger, A. Chem.-Eur. J. 2017, 23, 8921.
[22]
Allushi, A.; Bakvand, P. M.; Jannasch, P. Macromolecules 2023, 56, 1165.
[23]
Pan, D.; Olsson, J. S.; Jannasch, P. ACS Appl. Energy Mater. 2022, 5, 981.
[24]
Ghosh, S.; Banerjee, S. J. Membr. Sci. 2014, 470, 535.
[25]
Sprick, R. S.; Bonillo, B.; Clowes, R.; Guiglion, P.; Brownbill, N. J.; Slater, B. J.; Blanc, F.; Zwijnenburg, M. A.; Adams, D. J.; Cooper, A. I. Angew. Chem., Int. Ed. 2016, 55, 1792.
[26]
Alt, H. G.; Zenk, R. J. Organomet. Chem. 1996, 522, 39.
[27]
Esteb, J. J.; Bergeron, M.; Dormady, C. N.; Chien, J. C. W.; Rausch, M. D. J. Organomet. Chem. 2003, 675, 97.
[28]
Li, B.; Zhou, J.; Bai, F.; Xing, Y. Dyes Pigm. 2020, 172, 107862.
[29]
Staehler, C.; Grunenberg, L.; Terban, M. W.; Browne, W. R.; Doellerer, D.; Kathan, M.; Etter, M.; Lotsch, B. V.; Feringa, B. L.; Krause, S. Chem. Sci. 2022, 13, 8253.
[30]
Barnett, M. D.; Daub, G. H.; Hayes, F. N.; Ott, D. G. J. Am. Chem. Soc. 1959, 81, 4583.
[31]
Sakamoto, T.; Fukuda, Y.; Sato, S.-I.; Nakano, T. Angew. Chem., Int. Ed. 2009, 48, 9308.
[32]
Watanabe, K.; Sakamoto, T.; Nakano, T. Chirality 2011, 23, E28.
[33]
Mohammadkhanni, A.; Bazgir, A. Mol. Catal. 2018, 447, 28.
[34]
Li, H. B.; Seechurn, C.; Colacot, T. J. ACS Catal. 2012, 2, 1147.
[35]
Seechurn, C.; Kitching, M. O.; Colacot, T. J.; Snieckus, V. Angew. Chem., Int. Ed. 2012, 51, 5062.
[36]
Suzuki, A. Angew. Chem., Int. Ed. 2011, 50, 6722.
[37]
Colacot, T. J. Platinum Met. Rev. 2011, 55, 84.
[38]
Ni, C.; Shen, A.; Cao, Y. C.; Ye, X. F. Chin. J. Org. Chem. 2014, 34, 278 (in Chinese).
[38]
( 倪晨, 沈安, 曹育才, 叶晓峰, 有机化学, 2014, 34, 278.)
[39]
Li, Y. Q.; Cao, Y. C.; Ye, X. F.; Zhou, H. Chin. J. Org. Chem. 2011, 31, 1538 (in Chinese).
[39]
( 李永清, 曹育才, 叶晓峰, 周慧, 有机化学, 2011, 31, 1538.)
[40]
Bolliger, J. L.; Frech, C. M. Adv. Synth. Catal. 2010, 352, 1075.
[41]
Groombridge, B. J.; Goldup, S. M.; Larrosa, I. Chem. Commun. 2015, 51, 3832.
[42]
Zhang, Z.; Ji, H. Y.; Fu, X. L.; Yang, Y.; Xue, Y. R.; Gao, G. H. Chin. Chem. Lett. 2009, 20, 927.
[43]
Wen, X.; Wang, J.; He, L.; Wei, B.; Xie, Y. J. Carbohydr. Chem. 2022, 41, 369.
[44]
Xie, Q.; Li, J.; Wen, X.; Huang, Y.; Hu, Y.; Huang, Q.; Xu, G.; Xie, Y.; Zhou, Z. Carbohydr. Res. 2022, 512, 108516.
[45]
Destri, S.; Pasini, M.; Botta, C.; Porzio, W.; Bertini, F.; Marchio, L. J. Mater. Chem. 2002, 12, 924.
[46]
Kotaka, H.; Konishi, G.-I.; Mizuno, K. Tetrahedron Lett. 2010, 51, 181.
[47]
Wei, R. B.; Liu, Y.; Guo, J. J.; Liu, B.; Zhang, D. W. Chin. J. Org. Chem. 2008, 28, 390 (in Chinese).
[47]
( 魏荣宝, 刘洋, 郭金晶, 刘博, 张大为, 有机化学, 2008, 28, 390.)
[48]
Qin, C.; Liu, W.; Nie, Y.; Gao, Y.; Miao, J.; Li, T.; Jiang, X. Chin. J. Org. Chem. 2020, 40, 2232 (in Chinese).
[48]
( 秦成远, 刘威, 聂永, 高迎, 苗金玲, 李天瑞, 蒋绪川, 有机化学, 2020, 40, 2232.)
[49]
Sakamoto, T.; Watanabe, K.; Shichibu, Y.; Konishi, K.; Sato, S.-I.; Nakano, T. J. Polym. Sci., Part A: Polym. Chem. 2011, 49, 945.
[50]
Ju, C.; Li, X.; Yang, G.; Yuan, C.; Semin, S.; Feng, Y.; Rasing, T.; Xu, J. Dyes Pigm. 2019, 166, 272.
[51]
Thirion, D.; Poriel, C.; Metivier, R.; Rault-Berthelot, J.; Barriere, F.; Jeannin, O. Chem.-Eur. J. 2011, 17, 10272.
[52]
Xu, J.; Semin, S.; Niedzialek, D.; Kouwer, P. H. J.; Fron, E.; Coutino, E.; Savoini, M.; Li, Y.; Hofkens, J.; Uji-I, H.; Beljonne, D.; Rasing, T.; Rowan, A. E. Adv. Mater. 2013, 25, 2084.
[53]
Liu, Y.-W.; Huang, J.; Tan, J.-H.; Zeng, Y.; Ding, Q.; Xiang, X.-W.; Liu, Y.-J.; Zhang, H.-L. J. Polym. Sci., Part A: Polym. Chem. 2017, 55, 2373.
[54]
Qiu, S.; Zhang, Y.; Huang, X.; Bao, L.; Hong, Y.; Zeng, Z.; Wu, J. Org. Lett. 2016, 18, 6018.
[55]
Dmochowska, E.; Bombalska, A.; Kula, P. Liq. Cryst. 2020, 47, 17.
[56]
Hadizad, T.; Zhang, J.; Wang, Z. Y.; Gorjanc, T. C.; Py, C. Org. Lett. 2005, 7, 795.
[57]
Kuhnert, N.; Patel, C.; Jami, F. Tetrahedron Lett. 2005, 46, 7575.
[58]
Salunke, A. K.; Ghosh, A.; Banerjee, S. J. Appl. Polym. Sci. 2007, 106, 664.
[59]
Holloway, L. R.; Bogie, P. M.; Lyon, Y.; Ngai, C.; Miller, T. F.; Julian, R. R.; Hooley, R. J. J. Am. Chem. Soc. 2018, 140, 8078.
[60]
Zhou, Z. G.; Zhao, Y.; Zhen, H. Y.; Lin, Z. H.; Ling, Q. D. Appl. Organomet. Chem. 2016, 30, 924.
[61]
Zhou, Z.; Yuan, Y.; Xie, Y.; Li, M. Catal. Lett. 2018, 148, 2696.
[62]
Zhou, Z.; Li, M.; Liu, G.; Xu, G.; Xue, J. Appl. Organomet. Chem. 2019, 33, e4942.
[63]
Zhou, Z.; Xie, Q.; Zhou, X.; Yuan, Y.; Pan, Y.; Lu, D.; Du, Z.; Xue, J. Carbohydr. Res. 2020, 496, 108079.
[64]
Zhou, Z.; Xie, Q.; Li, J.; Yuan, Y.; Liu, Y.; Liu, Y.; Lu, D.; Xie, Y. Catal. Lett. 2022, 152, 838.
[65]
Wu, Y.; Dou, Z. J.; Wu, C. M.; Chen, H. B.; Zhang, Z. M.; Wang, X. X.; Yin, Z. Q.; Song, X.; He, C. L.; Yue, G. Z. Chin. J. Org. Chem. 2018, 38, 2896 (in Chinese).
[65]
( 吴瑶, 豆正杰, 吴彩梅, 陈华保, 张祖民, 王显祥, 殷中琼, 宋旭, 贺常亮, 乐贵洲, 有机化学, 2018, 38, 2896.)
[66]
Frisch, A. C.; Beller, M. Angew. Chem., Int. Ed. 2005, 44, 674.
[67]
Marion, N.; Nolan, S. P. Acc. Chem. Res. 2008, 41, 1440.
[68]
Martin, R.; Buchwald, S. L. Acc. Chem. Res. 2008, 41, 1461.
[69]
Fortman, G. C.; Nolan, S. P. Chem. Soc. Rev. 2011, 40, 5151.
[70]
Valente, C.; ?alimsiz, S.; Hoi, K. H.; Mallik, D.; Sayah, M.; Organ, M. G. Angew. Chem., Int. Ed. 2012, 51, 3314.
[71]
Biffis, A.; Centomo, P.; Del Zotto, A.; Zeccal, M. Chem. Rev. 2018, 118, 2249.
[72]
Krishnaraj, P.; Reddy, S. R. New J. Chem. 2023, 47, 974.
[73]
Polshettiwar, V.; Decottignies, A.; Len, C.; Fihri, A. ChemSusChem 2010, 3, 502.
[74]
Hooshmand, S. E.; Heidari, B.; Sedghi, R.; Varma, R. S. Green Chem. 2019, 21, 381.
[75]
Xu, P.; Duan, X. H. Chin. J. Org. Chem. 2019, 39, 3315 (in Chinese).
[75]
( 徐鹏, 段新红, 有机化学, 2019, 39, 3315.)
[76]
Jose, D. E.; Kanchana, U. S.; Mathew, T. V.; Anilkumar, G. J. Organomet. Chem. 2020, 927, 121538.
[77]
Kelley, C. J.; Ghiorghis, A.; Kauffman, J. M. J. Chem. Res., Synop. 1997, 446.
[78]
Biswas, A.; Bains, A. K.; Adhikari, D. Catal. Sci. Technol. 2022, 12, 4211.
[79]
Sharma, R.; Mondal, A.; Samanta, A.; Srimani, D. Catal. Sci. Technol. 2023, 13, 611.
[80]
Mondal, A.; Sharma, R.; Pal, D.; Srimani, D. Chem. Commun. 2021, 57, 10363.
[81]
Liu, Y.; Zhang, Y.; Wu, X.; Lan, Q.; Chen, C.; Liu, S.; Chi, Z.; Jiang, L.; Chen, X.; Xu, J. J. Mater. Chem. C 2014, 2, 1068.
[82]
Peng, Z.; Tao, S.; Zhang, X.; Tang, J.; Lee, C. S.; Lee, S.-T. J. Phys. Chem. C 2008, 112, 2165.
[83]
Huang, W. Y.; Chang, M. Y.; Han, Y. K.; Huang, P. T. J. Polym. Sci., Part A: Polym. Chem. 2010, 48, 5872.
[84]
Liu, J. J.; Qin, H.; Bar, X. W. Acta Polym. Sin. 2011, 42, 217 (in Chinese).
[84]
( 刘进军, 秦红, 巴信武, 高分子学报, 2011, 42, 217.)
[85]
Kumar, S.; Karthik, D.; Thomas, K. R. J.; Hundal, M. S. Tetrahedron Lett. 2014, 55, 1931.
[86]
Kotha, S.; Ali, R. J. Chem. Sci. 2019, 131, 1.
[87]
Asai, K.; Konishi, G.-I.; Sumi, K.; Kawauchi, S. Polym. Chem. 2010, 1, 321.
[88]
Liu, L. L.; Song, W. L.; Zhang, Z. Y.; Sun, P. F.; Lu, X. M.; Fan, Q. L.; Huang, W. Acta Polym. Sin. 2011, 42, 724 (in Chinese).
[88]
( 柳露林, 宋文利, 张志勇, 孙鹏飞, 卢晓梅, 范曲立, 黄维, 高分子学报, 2011, 42, 724.)
[89]
Li, L.; Wang, Z.; Chen, Q.; Zhou, X.; yang, T.; Zhao, Q.; Huang, W. J. Solid State Chem. 2015, 231, 47.
[90]
Jung, S. H.; Suh, D. H.; Cho, H. N. Polym. Bull. 2003, 50, 251.
[91]
Grisorio, R.; Mastrorilli, P.; Suranna, G. P. Polym. Chem. 2014, 5, 4304.
[92]
Liu, Z.-P.; Li, X.; Jiang, J.; Zhao, Y.-Y.; Zhao, X.-H.; Chen, H.-B. Chin. J. Lumin. 2013, 34, 579 (in Chinese).
[92]
( 刘志鹏, 李星, 江晶, 赵亚云, 赵秀华, 陈红兵, 发光学报, 2013, 34, 579.)
[93]
Tao, S. L.; Zhou, Y. C.; Lee, C. S.; Zhang, X. H.; Lee, S. T. Chem. Mater. 2010, 22, 2138.
[94]
Han, Q.; Su, Q.; Tang, L.; Feng, J.; Lu, P.; Wang, Y. J. Phys. Chem. C 2010, 114, 18702.
[95]
Wang, Z.; Shao, H.; Ye, J.; Zhang, L.; Lu, P. Adv. Funct. Mater. 2007, 17, 253.
[96]
Zhao, Y.-Y.; Liu, Z.-P.; Zhao, X.-H.; Zhang, J.; Li, X. Chin. J. Lumin. 2014, 35, 156 (in Chinese).
[96]
( 赵亚云, 刘志鹏, 赵秀华, 张洁, 李星, 发光学报, 2014, 35, 156.)
[97]
Lee, H. W.; Kim, H. J.; Kim, Y. S.; Kim, J.; Lee, S. E.; Lee, H. W.; Kim, Y. K.; Yoon, S. S. Displays 2015, 39, 1.
[98]
Dubey, D. K.; Krucaite, G.; Swayamprabha, S. S.; Yadav, R. A. K.; Blazevicius, D.; Tagare, J.; Chavhan, S.; Hsueh, T.-C.; Vaidyanathan, S.; Grigalevicius, S.; Jou, J.-H. Org. Electron. 2020, 79, 105633.
文章导航

/