一种Y型噻吨酮-咔唑分子的设计、合成及其蓝光和黄光有机发光二极管应用
收稿日期: 2023-09-27
修回日期: 2023-11-15
网络出版日期: 2023-12-29
基金资助
国家自然科学基金(62074109); 国家自然科学基金(6207031407); 国家自然科学基金委联合基金(U21A20492); 山西省科技创新人才队伍建设(202204051001013)
Design and Synthesis of a Y-Type Thioxanthone-Carbazole for the Application in Blue and Yellow Organic Light-Emitting Diodes
Received date: 2023-09-27
Revised date: 2023-11-15
Online published: 2023-12-29
Supported by
National Natural Science Foundation of China(62074109); National Natural Science Foundation of China(6207031407); Joint Funds of the National Natural Science Foundation of China(U21A20492); Science and Technology Innovation Talent Team Project of Shanxi Province(202204051001013)
采用噻吨酮作为受体, 9,9'-(1,3-苯基)二-9H-咔唑作为给体, 设计合成了一种Y型分子, 命名为TX-Ph2Cz. 化合物在稀释的溶液中展示了位于420 nm处的蓝光发射, 且其发射峰在不同极性的溶剂中基本不变. 在四氢呋喃/水的混合溶剂中, 随着含水量的增加发射峰红移了36 nm. 从其单晶结构中可以看出化合物具有很多分子间相互作用, 分子间的π…π作用有助于实现分子间的电荷转移. 化合物TX-Ph2Cz在掺杂器件(质量分数3%)中展示了位于440 nm的蓝光峰, 而在非掺杂器件中则展示了位于540 nm处的黄光峰, 这是因为在薄膜中化合物自身形成了电致激基缔合物. 同时, 非掺杂器件展示了更好的电致发光性能, 最大电流效率和最大外量子效率分别达到4.91 cd/A和2.64%.
关键词: 有机发光二极管(OLED); 噻吨酮-咔唑; Y型结构; 激基缔合物
孙静 , 樊志杰 , 杜纪宽 , 李硕 , 苗艳勤 , 赵波 , 董海亮 , 王华 . 一种Y型噻吨酮-咔唑分子的设计、合成及其蓝光和黄光有机发光二极管应用[J]. 有机化学, 2024 , 44(4) : 1210 -1217 . DOI: 10.6023/cjoc202309026
A Y-shaped emitter, TX-Ph2Cz, was designed and synthesized, which uses a thioketone unit as the acceptor and 9,9'-(1,3-phenylene)bis-9H-carbazole as the donor. The compound exhibited blue emission at about 420 nm in diluted solution and a small change in the different solvents with various polarities. In the mixed tetrahydrofuran (THF)/H2O solvents, emission bands had a red shift of 36 nm with the increased content of water. According to the single crystal structure, TX-Ph2Cz showed many intermolecular interaction and the π…π interaction between adjacent molecules would increase the intermolecular charge transfer. Critically, TX-Ph2Cz exhibited blue emission (440 nm) in the doped device, but yellow emission (540 nm) in the non-doped device was originated from the excimer of TX-Ph2Cz. Moreover, the maximum current efficiency and external quantum efficiency of non-doped device were 4.91 cd/A and 2.64%, respectively.
| [1] | Uoyama H.; Goushi K.; Shizu K.; Nomura H.; Adachi C. Nature 2012, 492, 234. |
| [2] | Lee S. Y.; Yasuda T.; Yang Y. S.; Zhang Q.; Adachi C. Angew. Chem., Int. Ed. 2014, 126, 6520. |
| [3] | Zhu Y.; Qu C.; Ye J.; Xu Y.; Zhang Z.; Wang Y. ACS Appl. Mater. Interfaces 2022, 14, 47971. |
| [4] | Cao X.; Zhang D.; Zhang S.; Tao Y.; Huang W. J. Mater. Chem. C 2017, 5, 7699. |
| [5] | Kuang Z.; He G.; Song H.; Wang X.; Hu Z.; Sun H.; Wan Y.; Guo Q.; Xia A. J. Phys. Chem. C 2018, 122, 3727. |
| [6] | Wang K.; Liu W.; Zheng C. J.; Shi Y. Z.; Liang K.; Zhang M.; Ou X. M.; Zhang X. H. J. Mater. Chem. C 2017, 5, 4797. |
| [7] | Ward J. S.; Nobuyasu R. S.; Batsanov A. S.; Data P.; Monkman A. P.; Dias F. B.; Bryce M. R. Chem. Commun. 2016, 52, 2612. |
| [8] | Zhang W.; Song H.; Kong J.; Kuang Z.; Li M.; Guo Q.; Chen C.; Xia A. J. Phys. Chem. C 2019, 123, 19322. |
| [9] | Lee J. H.; Cheng S. H.; Yoo S. J.; Shin H.; Chang J. H.; Wu C. I.; Wong K. T.; Kim J. J. Adv. Funct. Mater. 2015, 25, 361. |
| [10] | Park Y. S.; Lee S.; Kim K. H.; Kim S. Y.; Lee J. H.; Kim J. J. Adv. Funct. Mater. 2013, 23, 4914. |
| [11] | Jankus V.; Chiang C. J.; Dias F.; Monkman A. P. Adv. Mater. 2013, 25, 1455. |
| [12] | Jankus V.; Data P.; Graves D.; McGuinness C.; Santos J.; Bryce M. R.; Dias F. B.; Monkman A. P. Adv. Funct. Mater. 2015, 24, 6178. |
| [13] | Kim K. H.; Yoo S. J.; Kim J. J. Chem. Mater. 2016, 28, 1936. |
| [14] | Moon C. K.; Suzuki K.; Shizu K.; Adachi C.; Kaji H.; Kim J. J. Adv. Mater. 2017, 29, 1606448. |
| [15] | Nishimura N.; Lin Z.; Jinnai K.; Kabe R.; Adachi C. Adv. Funct. Mater. 2020, 30, 2000795. |
| [16] | Zhao G.; Wang B.; Liu D.; Ma D.; Chen H.; Tian W.; Ban X.; Jiang W.; Sun Y. Org. Electron. 2021, 99, 106309. |
| [17] | Jiang S.; Lin J.; Li D.; Li M.; He Y.; Xie W.; Chen J.; Gan Y.; Yang G. X.; Yang Z.; Li W.; Su S. J. Chem. Eng. J. 2023, 452, 139201. |
| [18] | Yao M.; Bian B.; Wu R.; Sun K.; Tian X.; Gong T.; Liu H.; Zhang S. T.; Yang B. Org. Electron. 2023, 122, 106905. |
| [19] | Zhang D. D.; Suzuki K.; Song X. Z.; Wada Y.; Kubo S.; Duan L.; Kaji H. ACS Appl. Mater. Inter. 2019, 11, 7192. |
| [20] | Shi Y. Z.; Wang K.; Li X.; Dai G. L.; Liu W.; Ke K.; Zhang M.; Tao S. L.; Zheng C. J.; Ou X. M.; Zhang X. H. Angew. Chem., Int. Ed. 2018, 57, 9480. |
| [21] | Chuang T. H.; Yang C. H.; Kao P. C. Inorg. Chem. 2009, 362, 5017. |
| [22] | Sun Y.; Shi M.; Zhu Y. N.; Perepichka I. F.; Xing X.; Liu Y. M.; Yan C. Y.; Meng H. ACS Appl. Mater. Interfaces 2020, 12, 24156. |
| [23] | Cho Y. J.; Yook K. S.; Lee J. Y. Adv. Mater. 2014, 26, 4050. |
| [24] | Wu C.; Wu Z.; Wang B.; Li X.; Zhao N.; Hu J.; Ma D.; Wang Q. ACS Appl. Mater. Interfaces 2017, 9, 32946. |
| [25] | Yang J.; Guo Q.; Wang J.; Ren Z.; Chen J.; Peng Q.; Ma D.; Li Z. Adv. Opt. Mater. 2018, 6, 1800342. |
/
| 〈 |
|
〉 |