综述与进展

连续流选择性加氢技术研究进展

  • 密思怡 ,
  • 马隆龙 ,
  • 刘建国
展开
  • a 东南大学-蒙纳士大学苏州联合研究生院 江苏苏州 215000
    b 东南大学能源与环境学院 南京 210096

收稿日期: 2023-10-07

  修回日期: 2023-11-23

  网络出版日期: 2023-12-29

基金资助

国家自然科学基金(51976225); 中央高校基本科研业务费专项资金(2242022R10058)

Research Progress of Continuous Flow Selective Hydrogenation Technology

  • Siyi Mi ,
  • Longlong Ma ,
  • Jianguo Liu
Expand
  • a Southeast University-Monash University Joint Graduate School, Suzhou, Jiangsu 215000
    b School of Energy and Environment, Southeast University, Nanjing 210096

Received date: 2023-10-07

  Revised date: 2023-11-23

  Online published: 2023-12-29

Supported by

National Natural Science Foundation of China(51976225); Fundamental Research Funds for the Central scientific Universities(2242022R10058)

摘要

流动氢化技术是合成制备精细化学品的重要手段, 在制备药物中间体及生产高值化学品方面占比极大. 非均相催化氢化法具有优良的经济环保性, 通过使用负载型催化剂能有效减少污染物排放, 提高底物转化率以及选择性. 详细介绍了按催化剂负载方式分类的微反应器类型以及常用的固体催化剂, 阐述了连续流技术在不同官能团催化氢化领域中取得的进展. 在此基础上概述了作为十大新兴化学技术之一的流动化学, 在催化加氢应用上具有极大远景, 连续、自动化和智能化技术是制药和化学工业的未来.

本文引用格式

密思怡 , 马隆龙 , 刘建国 . 连续流选择性加氢技术研究进展[J]. 有机化学, 2024 , 44(5) : 1445 -1457 . DOI: 10.6023/cjoc202310006

Abstract

Flow hydrogenation technology is an important means of synthesizing and preparing fine chemicals, accounting for a significant proportion of the preparation of pharmaceutical intermediates and the production of high-value chemicals. The heterogeneous catalytic hydrogenation method has excellent economic and environmental protection properties. By using loaded catalysts, pollutant emissions can be effectively reduced, and substrate conversion rate and selectivity can be improved. This article provides a detailed introduction to the types of microreactors classified by catalyst loading methods and commonly used solid catalysts and elaborates on the progress made by continuous flow technology in the field of catalytic hydrogenation of different functional groups. On this basis, flow chemistry, as one of the top ten emerging chemical technologies, has great prospects in catalytic hydrogenation applications. Continuous, automated, and intelligent technologies are the future of the pharmaceutical and chemical industries.

参考文献

[1]
Chen, Z. J.; Chen, J. Y.; Li, Y. W. Chin. J. Catal. 2017, 38, 1108.
[2]
Zhang, L.-L.; Zhou, M. X.; Wang, A. Q.; Zhang, T. Chem. Rev. 2020, 120, 683.
[3]
Yu, T.; Jiao, J.; Song, P. D.; Nie, W. Z.; Yi, C. H.; Zhang, Q.; Li, P. F. ChemSusChem 2020, 13, 2876.
[4]
Fanelli, F.; Parisi, G.; Degennaro, L.; Luisi, R. Beilstein J. Org. Chem. 2017, 13, 520.
[5]
Coyle, E.-E.; Oelgem?ller, M. Photochem. Photobiol. Sci. 2008, 7, 1313.
[6]
Munirathinam, R.; Huskens, J.; Verboom, W. Adv. Synth. Catal. 2015, 357, 1093.
[7]
Chinnusamy, T.; Yudha, S.-S.; Hager, M.; Kreitmeier, P.; Reiser, O. ChemSusChem 2012, 5, 247.
[8]
Colella, M.; Carlucci, C.; Luisi, R. Top. Curr. Chem. 2018, 376, 46.
[9]
Yoshida, J.; Kim, H.; Nagaki, A. ChemSusChem 2011, 4, 331.
[10]
Shang, M. J.; No?l, T.; Su, Y. H.; Hessel, V. Ind. Eng. Chem. Res. 2016, 55, 2669.
[11]
Zhao, D. B.; Ding, K. L. ACS Catal. 2013, 3, 928.
[12]
Karim, A.; Bravo, J.; Gorm, D.; Conant, T.; Datye, A. Catal. Today 2005, 110, 86.
[13]
Zhang, J. H.; Yin, J. B.; Duan, X. N.; Zhang, C. H.; Zhang, J. S. J. Catal. 2023, 420, 89.
[14]
Viklund, C.; Svec, F.; Fréchet, J. M. J.; Irgum, K. Chem. Mater. 1996, 8, 744.
[15]
Walsh, Z.; Paull, B.; Macka, M. Anal. Chim. Acta 2012, 750, 28.
[16]
Kirschning, A.; Solodenko, W.; Mennecke, K. Chem.-Eur. J. 2006, 12, 5972.
[17]
Sachse, A.; Galarneau, A.; Coq, B.; Fajula, F. New J. Chem. 2011, 35, 259.
[18]
Kieviet, B. D.; Sch?n, P. M.; Vancso, G. J. Lab Chip 2014, 14, 4159.
[19]
Avril, A.; Hornung, C. H.; Urban, A.; Fraser, D.; Horne, M.; Veder, J. P.; Tsanaktsidis, J.; Rodopoulos, T.; Henry, C.; Gunasegaram, D. R. React. Chem. Eng. 2017, 2, 180.
[20]
Hornung, C. H.; Nguyen, X.; Carafa, A.; Gardiner, J.; Urban, A.; Fraser, D.; Horne, M. D.; Gunasegaram, D. R.; Tsanaktsidis, J. Org. Process Res. Dev. 2017, 21, 1311.
[21]
Kundra, M.; Zhu, Y. T.; Nguyen, X.; Fraser, D.; Hornung, C. H.; Tsanaktsidis, J. React. Chem. Eng. 2022, 7, 284.
[22]
Lan, X. C.; Wang, T. F. ACS Catal. 2020, 10, 2764.
[23]
Arnold, H.; D?bert, F.; Gaube, J. In Selective Hydrogenation of Hydrocarbons, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008, p. 3266.
[24]
Polidoro, D.; Selva, M.; Luque, R. ChemSusChem 2023, 16, e202300318.
[25]
Zhuang, X. Z.; Liu, J. G.; Zhong, S. R.; Ma, L.-L. Sustainable Chem. Pharm. 2022, 29, 100769.
[26]
Audemar, M.; Wang, Y. T.; Zhao, D. Y.; Royer, S.; Jér?me, F.; Len, C.; De Oliveira Vigier, K. Energies 2020, 13, 1002.
[27]
Xu, J. M.; Cui, Q.-Q.; Xue, T.; Guan, Y. J.; Wu, P. ACS Omega 2020, 5, 30257.
[28]
Wang, W. Y.; Wang, Q.; Chu, Y.-Y.; Qi, G. D.; Li, S. H.; Xu, J.; Deng, F. J. Phys. Chem. C 2021, 125, 17144.
[29]
Viar, N.; Requies, J. M.; Agirre, I.; Iriondo, A.; García-Sancho, C.; Arias, P. L. Energy 2022, 255, 124437.
[30]
Kalong, M.; Srifa, A.; Ratchahat, S.; Koo-amornpattana, W.; Poo-arporn, Y.; Limphirat, W.; Khemthong, P.; Assabumrungrat, S.; Tomishige, K.; Kawi, S. Sustainable Energy Fuels 2023, 7, 934.
[31]
Anastas, P. T.; Kirchhoff, M.-M. Acc. Chem. Res. 2002, 35, 686.
[32]
Nie, R. F.; Tao, Y. W.; Nie, Y. Q.; Lu, T. L.; Wang, J. S.; Zhang, Y. S.; Lu, X. Y.; Xu, C.-C. ACS Catal. 2021, 11, 1071.
[33]
Ma, C.; Huang, M.-M.; Yin, J. B.; Lou, F. Y.; Zhang, J. S. Chem. Eng. Sci. 2022, 251, 117477.
[34]
Wang, N.; Liu, J. G.; Li, X. J.; Ma, L.-L. Catal. Commun. 2023, 175, 106620.
[35]
Yuan, Q.-Q.; Zhang, D. M.; Haandel, L. V.; Ye, F. Y.; Xue, T.; Hensen, E. J. M.; Guan, Y. J. J. Mol. Catal. A: Chem. 2015, 406, 58.
[36]
Maxted, E. B.; Moon, K. L.; Overgage, E. Discuss. Faraday Soc. 1950, 8, 135.
[37]
Popov, Y. V.; Mokhov, V. M.; Nebykov, D. N.; Latyshova, S. E.; Shcherbakova, K. V.; Panov, A. O. Kinet. Catal. 2018, 59, 444.
[38]
Carrales-Alvarado, D. H.; Dongil, A. B.; Guerrero-Ruiz, A.; Rodríguez-Ramos, I. Chem. Commun. 2021, 57, 6479.
[39]
Guicheret, B.; Vanoye, L.; Rivera-Carcamo, C.; de Bellefon, C.; Serp, P.; Philippe, R.; Favre-Reguillon, A. ChemSusChem 2022, 15, e202200916.
[40]
Phillips, J. M.; Ahamed, M.; Duan, X. F.; Lamb, R. N.; Qu, X. L.; Zheng, K.; Zou, J.; Chalker, J. M.; Raston, C. L. ACS Appl. Bio Mater. 2019, 2, 488.
[41]
Moore, J. C.; Howie, R. A.; Bourne, S. L.; Jenkins, G. N.; Licence, P.; Poliakoff, M.; George, M. W. ACS Sustainable Chem. Eng. 2019, 7, 16814.
[42]
Irfan, M.; Glasnov, T. N.; Kappe, C. O. ChemSusChem 2011, 4, 300.
[43]
Chaparro, S.; Martinez, J. J.; Rojas, H. A.; Pineda, A.; Luque, R. Catal. Today 2021, 368, 181.
[44]
Fernández-Ropero, A. J.; Zawadzki, B.; Kowalewski, E.; Pieta, I. S.; Krawczyk, M.; Matus, K.; Lisovytskiy, D.; ?r?bowata, A. Catalysts 2021, 11, 501.
[45]
Calcio Gaudino, E.; Manzoli, M.; Carnaroglio, D.; Wu, Z. L.; Grillo, G.; Rotolo, L.; Medlock, J.; Bonrath, W.; Cravotto, G. RSC Adv. 2018, 8, 7029.
[46]
Swamy, A.; Kanakikodi, K. S.; Bakuru, V. R.; Kulkarni, B.-B.; Maradur, S. P.; Kalidindi, S. B. ChemistrySelect 2023, 8, e202203926.
[47]
Bakuru, V. R.; Fazl-Ur-Rahman, K.; Periyasamy, G.; Velaga, B.; Peela, N. R.; Dmello, M. E.; Kanakikodi, K. S.; Maradur, S. P.; Maji, T. K.; Kalidindi, S. B. Catal. Sci. Technol. 2022, 12, 5265.
[48]
Ouyang, W. Y.; Yepez, A.; Romero, A.-A.; Luque, R. Catal. Today 2018, 308, 32.
[49]
Ratthiwal, J.; Lazaro, N.; Pineda, A.; Esposito, R.; Alothman, Z. A.; Reubroycharoen, P.; Luque, R. Catal. Commun. 2023, 177, 106649.
[50]
Ronda-Leal, M.; Osman, S. M.; Won Jang, H.; Shokouhimehr, M.; Romero, A.-A.; Luque, R. Fuel 2023, 333, 126221.
[51]
Chetty, T.; Dasireddy, V. D. B. C.; Friedrich, H. B. Catal. Lett. 2019, 149, 2787.
[52]
Cova, C. M.; Zuliani, A.; Mu?oz-Batista, M. J.; Luque, R. Green Chem. 2019, 21, 4712.
[53]
Osako, T.; Torii, K.; Hirata, S.; Uozumi, Y. ACS Catal. 2017, 7, 7371.
[54]
Rodriguez-Padron, D.; Perosa, A.; Longo, L.; Luque, R.; Selva, M. ChemSusChem 2022, 15, e202200503.
[55]
Mhadmhan, S.; Franco, A.; Pineda, A.; Reubroycharoen, P.; Luque, R. ACS Sustainable Chem. Eng. 2019, 7, 14210.
[56]
Molinari, R.; Lavorato, C.; Argurio, P. Chem. Eng. J. 2015, 274, 307.
[57]
Kreissl, H.; Jin, J.; Lin, S.-H.; Schüette, D.; St?rtte, S.; Levin, N.; Chaudret, B.; Vorholt, A. J.; Bordet, A.; Leitner, W. Angew. Chem.,Int. Ed. 2021, 60, 26639.
[58]
Lin, S.-S.; Liu, J. G.; Ma, L.-L. React. Chem. Eng. 2022, 7, 1126.
[59]
Heinen, A. W.; Peters, J. A.; Van Bekkum, H. Eur. J. Org. Chem. 2000, 2501.
[60]
Altu?, C.; Mu?oz-Batista, M. J.; Rodríguez-Padrón, D.; Balu, A. M.; Romero, A.-A.; Luque, R. Green Chem. 2019, 21, 300.
[61]
Polidoro, D.; Rodriguez-Padron, D.; Perosa, A.; Luque, R.; Selva, M. Materials (Basel) 2023, 16, 575.
[62]
Yang, H.-H.; Wang, L. G.; Xu, S.; Hui, X.; Cao, Y.; He, P.; Li, Y.; Li, H. Q. Chem. Eng. J. 2022, 431, 133863.
[63]
Sebek, M.; Atia, H.; Steinfeldt, N. J. Flow Chem. 2021, 11, 333.
[64]
Duan, X. N.; Yin, J. B.; Feng, A. X.; Huang, M.-M.; Fu, W. S.; Xu, W. F.; Huang, Z. F.; Zhang, J. S. J. Flow Chem. 2021, 12, 121.
[65]
Chai, K. J.; Shen, R. Q.; Qi, T.-T.; Chen, J. L.; Su, W. K.; Su, A. Processes 2023, 11, 1074.
[66]
Kowalewski, E.; Matus, K.; Gajek, A.; ?r?bowata, A. Catalysts 2022, 12, 1062.
[67]
Herzog, B. D.; Smiley, R. A. In Hexamethylenediamine, Wiley-VCH, Weinheim, 2012, p. 2.
[68]
Sharma, D. M.; Punji, B. Chem.-Asian J. 2020, 15, 690.
[69]
Bagal, D. B.; Bhanage, B. M. Adv. Synth. Catal. 2015, 357, 883.
[70]
Konrath, R.; Heutz, F. J. L.; Steinfeldt, N.; Rockstroh, N.; Kamer, P. C. J. Chem. Sci. 2019, 10, 8195.
[71]
Meszaros, R.; Peng, B. J.; Otvos, S. B.; Yang, S. C.; Fulop, F. ChemPlusChem 2019, 84, 1508.
[72]
Yamada, T.; Park, K.; Furugen, C.; Jiang, J.; Shimizu, E.; Ito, N.; Sajiki, H. ChemSusChem 2022, 15, e202102138.
[73]
Nagu, A.; Vasikerappa, K.; Gidyonu, P.; Prathap, C.; Venkata Rao, M.; Rama Rao, K. S.; David Raju, B. Res. Chem. Intermed. 2020, 46, 2669.
[74]
Dempsey, S. D.; Ryan, A.-A.; Smyth, M.; Moody, T. S.; Wharry, S.; Fahey, K.; Beale, A. M.; Mediavilla Madrigal, S.; Dingwall, P.; Rooney, D. W.; Knipe, P. C.; Muldoon, M. J.; Thompson, J. M. React. Chem. Eng. 2023, 8, 1559.
[75]
Wang, P. X.; Peng, Z. P.; Wang, X. P.; Lin, Y.; Hong, H. B.; Chen, F.; Chen, X. K.; Zhang, J. S. Chem. Eng. Sci. 2023, 269, 118460.
[76]
Sartori, G.; Ballini, R.; Bigi, F.; Bosica, G.; Maggi, R.; Righi, P. Chem. Rev. 2004, 104, 199.
[77]
Benson, H.; Bones, K.; Churchill, G.; Ford, G.; Frodsham, L.; Janbon, S.; Millington, F.; Powell, L.; Raw, S. A.; Reid, J.; Stark, A.; Steven, A. Org. Process Res. Dev. 2020, 24, 588.
[78]
Sultane, P. R.; Mete, T. B.; Bhat, R. G. Tetrahedron Lett. 2015, 56, 2067.
[79]
Yamada, T.; Teranishi, W.; Park, K.; Jiang, J.; Tachikawa, T.; Furusato, S.; Sajiki, H. ChemCatChem 2020, 12, 4052.
[80]
Desai, B.; Dallinger, D.; Kappe, C. O. Tetrahedron 2006, 62, 4651.
[81]
Tu, J. C.; Sang, L.; Cheng, H.; Ai, N.; Zhang, J. S. Org. Process Res. Dev. 2019, 24, 59.
[82]
Menti-Platten, M.; Aldrich-Wright, J. R.; Gordon, C. P. Org. Biomol. Chem. 2021, 20, 106.
[83]
Yamada, T.; Yamamoto, H.; Kawai, K.; Park, K.; Aono, N.; Sajiki, H. Catalysts 2022, 12, 1253.
[84]
Mattellone, A.; Corbisiero, D.; Ferrazzano, L.; Cantelmi, P.; Martelli, G.; Palladino, C.; Tolomelli, A.; Cabri, W. Green Chem. 2023, 25, 2563.
文章导航

/