研究论文

电化学氧化α-酮酸与邻氨基苄胺的脱羧环化反应

  • 吴际伟 ,
  • 何俊 ,
  • 王晶晶 ,
  • 李丽霞 ,
  • 徐采玉 ,
  • 周洁 ,
  • 李子荣 ,
  • 许华建
展开
  • a 安徽科技学院化学与材料工程学院 安徽凤阳 233100
    b 合肥工业大学食品与生物工程学院 合肥 230009

收稿日期: 2023-10-18

  修回日期: 2023-12-19

  网络出版日期: 2024-01-05

基金资助

安徽省自然科学基金(2008085QB66); 安徽科技学人才引进项目(HCYJ201903); 中央高校基础研究计划(PA2020GDKC0021); 安徽省大学生创新创业训练计划(S202310879099); 合肥力恒化工有限公司(881133)

Electrochemical Oxidation Decarboxylative Cyclization of α-Keto Acid with o-Aminobenzylamine

  • Jiwei Wu ,
  • Jun He ,
  • Jingjing Wang ,
  • Lixia Li ,
  • Caiyu Xu ,
  • Jie Zhou ,
  • Zirong Li ,
  • Huajian Xu
Expand
  • a College of Chemistry and Materials Engineering, Anhui Science and Technology University, Fengyang, Anhui 233100
    b School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009

Received date: 2023-10-18

  Revised date: 2023-12-19

  Online published: 2024-01-05

Supported by

Natural Science Foundation of Anhui Province(2008085QB66); Anhui Science and Technology Talent Introduction Project(HCYJ201903); Fundamental Research Funds for the Central Universities(PA2020GDKC0021); Innovation and Entrepreneurship Training Program for College Students in Anhui Province(S202310879099); Hefei Liheng Chemical Co., Ltd.(881133)

摘要

发展了一种无金属、无外加化学氧化剂的条件下, 电化学氧化α-酮酸脱羧与邻氨基苄胺的高效环化反应合成喹唑啉类化合物的方法. 该方法反应条件温和, 底物适用范围广, 以中等到优良的产率得到相应的产物. 同时, 该方法也可以用于苯并噁唑、苯并噻唑和苯并咪唑等杂环的合成.

本文引用格式

吴际伟 , 何俊 , 王晶晶 , 李丽霞 , 徐采玉 , 周洁 , 李子荣 , 许华建 . 电化学氧化α-酮酸与邻氨基苄胺的脱羧环化反应[J]. 有机化学, 2024 , 44(3) : 972 -980 . DOI: 10.6023/cjoc202310015

Abstract

A novel method for synthesizing quinazolines by an electrochemical oxidation decarboxylative cyclization reaction of α-keto acid with o-aminobenzylamine under metal and external chemical oxidants free conditions was developed. This method has mild reaction conditions, and can tolerate a wide range of functional groups, and can provide the corresponding products with moderate to excellent yields. Furthermore, the method can also be used for the synthesis of other heterocycles such as benzoxazole, benzothiazole and benzimidazole.

参考文献

[1]
Gupta T.; Rohilla A.; Pathak A.; Akhtar J.; Haider M. R.; Yar M. S. Synth. Commun. 2018, 48, 1099.
[2]
Horn K. S. V.; Burda W. N.; Fleeman R.; Shaw L. N.; Manetsch R. J. Med. Chem. 2014, 57, 3075.
[3]
Smits R. A.; Adami M.; Istyastono E. P.; Zuiderveld O. P.; Van Dam C. M. E.; De Kanter F. J. J.; Jongejan A.; Coruzzi G.; Leurs R.; De Esch I. J. P. J. Med. Chem. 2010, 53, 2390.
[4]
Madapa S.; Tusi Z.; Mishra A.; Srivastava K.; Pandey S. K.; Tripathi R.; Puri S. K.; Batra S. Bioorg. Med. Chem. 2009, 17, 222.
[5]
Ugale V. G.; Bari S. B. Eur. J. Med. Chem. 2014, 80, 447.
[6]
Zhang Y.; Hou Q.; Li X.; Zhu J.; Wang W.; Li B.; Zhao L.; Xia H. Eur. J. Med. Chem. 2019, 178, 417.
[7]
Raskind M. A.; Peskind E. R.; Chow B.; Harris C.; Davis-Karim A.; Holmes H. A.; Hart K. L.; McFall M.; Mellman T. A.; Reist C.; Romesser J.; Rosenheck R.; Shih M. C.; Stein M. B.; Swift R.; Gleason T.; Lu Y.; Huang G. D. N. Engl. J. Med. 2018, 378, 507.
[8]
Moy B.; Kirkpatrick P.; Kar S.; Goss P. Nat. Rev. Drug Discovery 2007, 6, 431.
[9]
Sordella R.; Bell D. W.; Haber D. A.; Settleman J. Science 2004, 305, 1163.
[10]
(a) Sikari R.; Chakraborty G.; Guin A. K.; Paul N. D. J. Org. Chem. 2021, 86, 279.
[10]
(b) Xu H.-B.; Zhu Y.-Y.; Yang J.-H.; Chai X.-Y.; Dong L. Org. Chem. Front. 2020, 7, 1230.
[10]
(c) Yan Y.; Zhang Y.; Feng C.; Zha Z.; Wang Z. Angew. Chem., Int. Ed. 2012, 51, 8077.
[10]
(d) Zhang L.; Hu Z.; Dong J.; Zhang X. M.; Xu X. Adv. Synth. Catal. 2018, 360, 1938.
[10]
(e) Zhou Z.; Hu K.; Wang J.; Li Z.; Zhang Y.; Zha Z.; Wang Z. ACS Omega 2020, 5, 31963.
[11]
(a) Li C.; An S.; Zhu Y.; Zhang J.; Kang Y.; Liu P.; Wang Y.; Li J. RSC Adv. 2014, 4, 49888.
[11]
(b) Sikari R.; Chakraborty G.; Guin A. K.; Paul N. D. J. Org. Chem. 2021, 86, 279.
[11]
(c) Chakrabarti K.; Maji M.; Kundu S. Green Chem. 2019, 21, 1999.
[11]
(d) Huo S.; Kong S.; Zeng G.; Feng Q.; Lu G. L. J. Mol. Catal. 2021, 514, 111773.
[11]
(e) Kumar G. R. Y.; Begum N. S. New J. Chem. 2021, 45, 9811.
[11]
(f) Das S.; Mondal R.; Chakraborty G.; Guin A. K.; Das A.; Paul N. D. ACS Catal. 2021, 11, 7498.
[11]
(g) Yamaguchi T.; Sakairi K.; Yamaguchi E.; Tada N.; Itoh A. RSC Adv. 2016, 6, 56892.
[12]
(a) Tan Y.; Jiang W.; Ni P.; Fu Y.; Ding Q. Adv. Synth. Catal. 2022, 364, 3600.
[12]
(b) Shariati M.; Imanzadeh G.; Rostami A.; Ghoreishy N.; Kheirjou S. CR Chim. 2019, 22, 337.
[12]
(c) Yao S.; Zhou K.; Wang J.; Cao H.; Yu L.; Wu J.; Qiu P.; Xu Q. Green Chem. 2017, 19, 2945.
[12]
(d) Saha M.; Mukherjee P.; Das A. R. Tetrahedron Lett. 2017, 58, 2044.
[12]
(e) Liu Q.; Chen H.; Li S.; Guo Y.; Cao S.; Zhao Y. ChemistrySelect 2022, 7, e202201231.
[12]
(f) Han B.; Wang C.; Han R.-F.; Yu W.; Duan X.-Y.; Fang R.; Yang X.-L. Chem. Commun. 2011, 47, 7818.
[13]
(a) Gujjarappa R.; Vodnala N.; Reddy V. G.; Malakar C. C. Eur. J. Org. Chem. 2020, 2020, 803.
[13]
(b) Gujjarappa R.; Maity S. K.; Hazra C. K.; Vodnala N.; Dhiman S.; Kumar A.; Beifuss U.; Malakar C. C. Eur. J. Org. Chem. 2018, 2018, 4628.
[13]
(c) Ma J.; Wan Y.; Hong C.; Li M.; Hu X.; Mo W.; Hu B.; Sun N.; Jin L.; Shen Z. Eur. J. Org. Chem. 2017, 2017, 3335.
[14]
Laha J. K.; Panday S.; Tomar M.; Patel K. V. Org. Biomol. Chem. 2021, 19, 845.
[15]
Yang J.; Xie Z.; Jin L.; Chen X.; Le Z. Org. Biomol. Chem. 2022, 20, 3558.
[16]
(a) Yuan Y.; Yang J.; Lei A. Chem. Soc. Rev. 2021, 50, 10058.
[16]
(b) Xiong P.; Xu H.-C. Acc. Chem. Res. 2019, 52, 3339.
[16]
(c) Jiao K.-J.; Xing Y.-K.; Yang Q. L.; Qiu H.; Mei T.-S. Acc. Chem. Res. 2020, 53, 300.
[16]
(d) Shi S.-H.; Liang Y.; Jiao N. Chem. Rev. 2021, 121, 485.
[16]
(e) Minteer S. D.; Baran P. S. Acc. Chem. Res. 2020, 53, 545.
[16]
(f) Qian P.; Zha Z.; Wang Z. ChemElectroChem 2020, 7, 2527.
[16]
(g) Yount J.; Piercey D. G. Chem. Rev. 2022, 122, 8809.
[16]
(h) Cheng X.; Lei A.; Mei T.-S.; Xu H.-C.; Xu K.; Zeng C. CCS Chem. 2022, 4, 1120.
[16]
(i) Pan Y.; Meng X.; Wang Y.; He M. Chin. J. Org. Chem. 2023, 43, 1416. (in Chinese)
[16]
( 潘永周, 蒙秀金, 王迎春, 何慕雪, 有机化学, 2023, 43, 1416.)
[16]
(j) Zhang H.; Liang S.; Wei D.; Xu K.; Zeng C. Eur. J. Org. Chem. 2022, 2022, e202200794.
[16]
(k) Wu Y.; Yi H.; Lei A. ACS Catal. 2018, 8, 1192.
[16]
(l) Xiao Q.; Tong Q.-X.; Zhong J.-J. Chin. J. Org. Chem. 2022, 42, 3979. (in Chinese)
[16]
肖潜, 佟庆笑, 钟建基, 有机化学, 2022, 42, 3979.).
[16]
(m) Tan Z.; Zhang H.; Xu K.; Zeng C. Sci. China: Chem. 2024, 67, 450.
[16]
(n) Wei W.; Zhan L.; Gao L.; Huang G.; Ma X. Chin. J. Org. Chem. 2023, 43, 17. (in Chinese)
[16]
( 魏琬絜, 詹磊, 高雷, 黄国保, 马献力, 有机化学, 2023, 43, 17.)
[17]
(a) Lin D.-Z.; Huang J.-M. Org. Lett. 2018, 20, 2112.
[17]
(b) Lin D.-Z.; Huang J.-M. Org. Lett. 2019, 21, 5862.
[17]
(c) Wang H.-B.; Huang J.-M. Adv. Synth. Catal. 2016, 358, 1975.
[18]
(a) Wang Q.-Q.; Xu K.; Jiang Y.-Y.; Liu Y.-G.; Sun B.-G.; Zeng C.-C. Org. Lett. 2017, 19, 5517.
[18]
(b) Ding H.; Xu K.; Zeng C. C. J. Catal. 2020, 381, 38.
[18]
(c) Li Y.; Liang S.; Wang D.; Xu K.; Zeng C. Synthesis 2023, 55, 3026.
[19]
Kong X.; Liu Y.; Lin L.; Chen Q.; Xu B. Green Chem. 2019, 21, 3796.
[20]
Lu F.; Gong F.; Li L.; Zhang K.; Li Z.; Zhang X.; Yin Y.; Wang Y.; Gao Z.; Zhang H.; Lei A. Eur. J. Org. Chem. 2020, 2020, 3257.
[21]
Zhao F.; Meng N.; Sun T.; Wen J.; Zhao X.; Wei W. Org. Chem. Front. 2021, 8, 6508.
[22]
(a) Zhao Y.; Meng X.; Cai C.; Wang L.; Gong H. Asian J. Org. Chem. 2022, 11, e202100748.
[22]
(b) Kong X.; Chen Y.; Chen X.; Lu Z.-X.; Wang W.; Ni S.-F.; Cao Z.-Y. Org. Lett. 2022, 24, 2137.
[22]
(c) Wang X.; Wu S.; Zhong Y.; Wang Y.; Pan Y.; Tang H. Chin. Chem. Lett. 2023, 34, 107537.
[23]
(a) Wu J.; Shi H.; Liu J.; Wang R.; Zhou J.; Xu X.-L.; Xu H.-J. Org. Chem. Front. 2023, 10, 2459.
[23]
(b) Dai J.-J.; Teng X.-X.; Fang W.; Xu J.; Xu H.-J. Chin. Chem. Lett. 2022, 33, 1555.
[23]
(c) Zhu X.-X.; Wang H.-Q.; Li C.-G.; Xu X.-L.; Xu J.; Dai J.-J.; Xu H.-J. J. Org. Chem. 2021, 86, 16114.
[24]
Mangiavacchi1 F.; Mollari1, L.; Bagnoli1, L.; Marini1, F.; Santi1, C. Chem. Heterocycl. Compd. 2018, 54, 478.
文章导航

/