综述与进展

电化学芳烃C(sp2)—H胺化反应的研究进展

  • 朱子乐 ,
  • 李鹏飞 ,
  • 仇友爱
展开
  • 南开大学化学学院 元素有机化学国家重点实验室 天津 300071
共同第一作者

收稿日期: 2023-10-31

  修回日期: 2023-12-13

  网络出版日期: 2024-01-05

基金资助

国家重点研发计划(2022YFA1503200); 国家自然科学基金(22371149); 国家自然科学基金(22188101); 中央高校基本科研业务费专项资金(63223015); 南开大学有机新物质创造前沿科学中心(63181206)

Recent Advance in Electrochemical C(sp2)—H Amination of Arenes

  • Zile Zhu ,
  • Pengfei Li ,
  • Youai Qiu
Expand
  • State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071
The authors contributed equally to this work.

Received date: 2023-10-31

  Revised date: 2023-12-13

  Online published: 2024-01-05

Supported by

National Key Research and Development Program of China(2022YFA1503200); National Natural Science Foundation of China(22371149); National Natural Science Foundation of China(22188101); Fundamental Research Funds for the Central Universities(63223015); Frontiers Science Center for New Organic Matter, Nankai University(63181206)

摘要

苯胺及其衍生物在人类生活和工业生产中被广泛地使用, 促使人们探索从相应的C(sp2)—H键直接构建芳香C(sp2)—N键的反应方法. 近年来, 有机电化学作为一种可控、可持续、环境友好和易于扩展规模的方法, 受到越来越多的关注, 同时也为芳烃的胺化提供了新的反应模式. 在此篇综述中, 总结了电化学芳香族C(sp2)—H胺化反应中常见的机理途径, 根据所涉及的胺源类型对反应实例进行了分类, 并对该领域的前景和挑战提供了见解.

本文引用格式

朱子乐 , 李鹏飞 , 仇友爱 . 电化学芳烃C(sp2)—H胺化反应的研究进展[J]. 有机化学, 2024 , 44(3) : 871 -891 . DOI: 10.6023/cjoc202310033

Abstract

Aniline and its derivatives are widely used and consumed in human life and industrial production, which inspires the direct aromatic C(sp2)—N construction from the corresponding C(sp2)—H bond. In recent years, as a controllable, sustainable, ambient, and highly scalable methodology, organic electrochemistry has received greater attention and also combined aromatic C(sp2)—N amination, presenting novel reactions. In this review, the common mechanism manifolds of electrochemical aromatic C(sp2)—H amination reactions are summarized, and the reactions examples are classified according to the type of amine sources. The prospects and challenges in this field are provided.

参考文献

[1]
Amini B.; Lowenkron S. In Kirk-Othmer Encyclopedia of Chemical Technology, Ed.: Kirk-Othmer, Wiley, New York, 2003.
[2]
Rappoport Z. The Chemistry of Anilines, 1st ed., Wiley, Chichester, 2007.
[3]
Kahl T.; Schr?der K.-W.; Lawrence F. R.; Marshall W. J.; H?ke H.; J?ckh R.In Ullmann's Encyclopedia of Industrial Chemistry, Eds.: Elvers, B.; Bellussi, G., Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2011, p. 465-477.
[4]
Anjalin M.; Kanagathara N.; Suganthi A. R. B. Mater. Today Proc. 2020, 33, 4751.
[5]
Shuja M. H.; Shuja S. H.; Shakil F.; Ahmed I. Ann. Med. Surg. 2023, 85, 1346.
[6]
Niu W.; Li L.; Liu X.; Wang N.; Liu J.; Zhou W.; Tang Z.; Chen S. J. Am. Chem. Soc. 2015, 137, 5555.
[7]
Vervoort J.; De Jager P. A.; Steenbergen J.; Rietjens I. M. C. M. Xenobiotica 1990, 20, 657.
[8]
Duckett C. J.; Lindon J. C.; Walker H.; Abou-Shakra F.; Wilson I. D; Nicholson J. K. Xenobiotica 2006, 36, 59.
[9]
MacKetta J. J. In Encyclopedia of Chemical Processing and Design, Dekker, New York, 1990.
[10]
Béchamp Reduction, In Comprehensive Organic Name Reactions and Reagents, Wiley, Hoboken, NJ, 2010, pp. 284-287.
[11]
Porter H. K. In Organic Reactions, Ed.: Denmark, S. E., Wiley, 2011, pp. 455-481, doi: 10.1002/0471264180.or074.03.
[12]
Driessen R. T.; Kamphuis P.; Mathijssen L.; Zhang R.; Van Der Ham, L. G. J.; Van Den Berg, H.; Zeeuw, A. J. Chem. Eng. Technol. 2017, 40, 838.
[13]
Moreno S. N.; Docampo R. Environ. Health Perspect. 1985, 64, 199.
[14]
Goldberg I. Ber. Dtsch. Chem. Ges. 1906, 39, 1691.
[15]
Allen C. F. H.; McKee G. H. W. Org. Synth. 1939, 19, 6.
[16]
Paul F.; Patt J.; Hartwig J. F. J. Am. Chem. Soc. 1994, 116, 5969.
[17]
Guram A. S.; Buchwald S. L. J. Am. Chem. Soc. 1994, 116, 7901.
[18]
Chan D. M. T.; Monaco K. L.; Wang R.-P.; Winters M. P. Tetrahedron Lett. 1998, 39, 2933.
[19]
Lam P. Y. S.; Clark C. G.; Saubern S.; Adams J.; Winters M. P.; Chan D. M. T.; Combs A. Tetrahedron Lett. 1998, 39, 2941.
[20]
Burns N. Z.; Baran P. S.; Hoffmann R. W. Angew. Chem., Int. Ed. 2009, 48, 2854.
[21]
Louillat M.-L.; Patureau F. W. Chem. Soc. Rev. 2014, 43, 901.
[22]
Park Y.; Kim Y.; Chang S. Chem. Rev. 2017, 117, 9247.
[23]
Yang Y.; Zhang D.; Vessally E. Top. Curr. Chem. 2020, 378, 37.
[24]
Beletskaya I. P.; Averin A. D. Russ. Chem. Rev. 2021, 90, 1359.
[25]
Feng Y.-L.; Shi B.-F. Chin. J. Org. Chem. 2021, 41, 3753. (in Chinese)
[25]
( 冯亚岚, 史炳锋, 有机化学, 2021, 41, 3753.)
[26]
Ravindar L.; Hasbullah S. A.; Hassan N. I.; Qin H. Eur. J. Org. Chem. 2022, 31, e202200596.
[27]
Krishna Rao M. V.; Kareem S.; Vali S. R.; Subba Reddy B. V. Org. Biomol. Chem. 2023, 21, 8426.
[28]
Boursalian G. B.; Ngai M. Y.; Hojczyk K. N.; Ritter T. J. Am. Chem. Soc. 2013, 135, 13278.
[29]
Roy S.; Panja S.; Sahoo S. R.; Chatterjee S.; Maiti D. Chem. Soc. Rev. 2023, 52, 2391.
[30]
Mu?iz K. Acc. Chem. Res. 2018, 51, 1507.
[31]
K?rk?s M. D. Chem. Soc. Rev. 2018, 47, 5786.
[32]
Liu C.; Liu J.; Li W.; Lu H.; Zhang Y. Org. Chem. Front. 2023, 10, 5309.
[33]
Zhang H.; Lei A. Synthesis 2019, 51, 83.
[34]
Meng Z.; Feng C.; Xu K. Chin. J. Org. Chem. 2021, 41, 2535. (in Chinese)
[34]
( 蒙泽银, 冯承涛, 徐坤, 有机化学, 2021, 41, 2535.)
[35]
Chen N.; Xu H. Green Synth. Catal. 2021, 2, 165.
[36]
Wang H.; Gao X.; Lv Z.; Abdelilah T.; Lei A. Chem. Rev. 2019, 119, 6769.
[37]
Lu L.; Shi R.; Lei A. Trends Chem. 2022, 4, 179.
[38]
Cavedon C.; Seeberger P. H.; Pieber B. Eur. J. Org. Chem. 2020, 2020, 1379.
[39]
Singh S.; Roy V. J.; Dagar N.; Sen P. P.; Roy S. R. Adv. Synth. Catal. 2021, 363, 937.
[40]
Kwon K.; Simons R. T.; Nandakumar M.; Roizen J. L. Chem. Rev. 2022, 122, 2353.
[41]
Holmberg-Douglas N.; Nicewicz D. A. Chem. Rev. 2022, 122, 1925.
[42]
Chan C.; Chow Y.; Yu W. Synthesis 2020, 52, 2899.
[43]
Frontana-Uribe B. A.; Little R. D.; Ibanez J. G.; Palma A.; Vasquez-Medrano R. Green Chem. 2010, 12, 2099.
[44]
Luca O. R.; Gustafson J. L.; Maddox S. M.; Fenwick A. Q.; Smith D. C. Org. Chem. Front. 2015, 2, 823.
[45]
Yan M.; Kawamata Y.; Baran P. S. Chem. Rev. 2017, 117, 13230.
[46]
Wiebe A.; Gieshoff T.; M?hle S.; Rodrigo E.; Zirbes M.; Waldvogel S. R. Angew. Chem., Int. Ed. 2018, 57, 5594.
[47]
Shida N.; Zhou Y.; Inagi S. Acc. Chem. Res. 2019, 52, 2598.
[48]
Kingston C.; Palkowitz M. D.; Takahira Y.; Vantourout J. C.; Peters B. K.; Kawamata Y.; Baran P. S. Acc. Chem. Res. 2020, 53, 72.
[49]
Novaes L. F. T.; Liu J.; Shen Y.; Lu L.; Meinhardt J. M.; Lin S. Chem. Soc. Rev. 2021, 50, 7941.
[50]
Feng T.; Wang S.; Qiu Y. Synlett 2022, 33, 1582.
[51]
Ogibin Y. N.; Elinson M. N.; Nikishin G. I. Russ. Chem. Rev. 2009, 78, 89.
[52]
Francke R.; Little R. D. Chem. Soc. Rev. 2014, 43, 2492.
[53]
Tay N. E. S.; Lehnherr D.; Rovis T. Chem. Rev. 2022, 122, 2487.
[54]
Mruthunjaya A. K. V.; Torriero A. A. J. Molecules 2023, 28, 471.
[55]
Roth H.; Romero N.; Nicewicz D. Synlett 2015, 27, 714.
[56]
Wawzonek S.; McIntyre T. W. J. Electrochem. Soc. 1967, 114, 1025.
[57]
Dvo?ák V.; Němec I.; Zyka J. Microchem. J. 1967, 12, 99.
[58]
Paduszek B.; Kalinowski M. K. Electrochim. Acta 1983, 28, 639.
[59]
Loveland J. W.; Dimeler G. R. Anal. Chem. 1961, 33, 1196.
[60]
O’Donnell, J. F.; Mann, C. K. J. Electroanal. Chem. Interfacial Electrochem. 1967, 13, 157.
[61]
Merkel P. B.; Luo P.; Dinnocenzo J. P.; Farid S. J. Org. Chem. 2009, 74, 5163.
[62]
Kita Y.; Tohma H.; Hatanaka K.; Takada T.; Fujita S.; Mitoh S.; Sakurai H.; Oka S. J. Am. Chem. Soc. 1994, 116, 3684.
[63]
Ischay M. A.; Yoon T. P. Eur. J. Org. Chem. 2012, 2012, 3359.
[64]
Yi H.; Zhang G.; Wang H.; Huang Z.; Wang J.; Singh A. K.; Lei A. Chem. Rev. 2017, 117, 9016.
[65]
Cui H.-L. Org. Biomol. Chem. 2020, 18, 2975.
[66]
Pistritto V. A.; Liu S.; Nicewicz D. A. J. Am. Chem. Soc. 2022, 144, 15118.
[67]
Michejda C. J. W.; Hoss P. J. Am. Chem. Soc. 1970, 92, 6298.
[68]
Danen W. C.; Neugebauer F. A. Angew. Chem. Int. Ed. Engl. 1975, 14, 783.
[69]
Chow Y. L.; Danen W. C.; Nelsen S. F.; Rosenblatt D. H. Chem. Rev. 1978, 78, 243.
[70]
Zard S. Z. Chem. Soc. Rev. 2008, 37, 1603.
[71]
Xiong T.; Zhang Q. Chem. Soc. Rev. 2016, 45, 3069.
[72]
Boursalian G. B.; Ham W. S.; Mazzotti A. R.; Ritter T. Nat. Chem. 2016, 8, 810.
[73]
Pratley C.; Fenner S.; Murphy J. A. Chem. Rev. 2022, 122, 8181.
[74]
Gao W.; Li W.; Zeng C.; Tian H.; Hu L.; Little R. J. Org. Chem. 2014, 79, 9613.
[75]
Qiu Y.; Struwe J.; Meyer T. H.; Oliveira J. C. A.; Ackermann L. Chem.-Eur. J. 2018, 24, 12784.
[76]
Gao X.; Wang P.; Zeng L.; Tang S.; Lei A. J. Am. Chem. Soc. 2018, 140, 4195.
[77]
Sauermann N.; Mei R.; Ackermann L. Angew. Chem., Int. Ed. 2018, 57, 5090.
[78]
Zhang S.; Samanta R. C.; Sauermann N.; Ackermann L. Chem.- Eur. J. 2018, 24, 19166.
[79]
Kathiravan S.; Suriyanarayanan S.; Nicholls I. A. Org. Lett. 2019, 21, 1968.
[80]
Yang Q.; Wang X.; Lu J.; Zhang L.; Fang P.; Mei T. J. Am. Chem. Soc. 2018, 140, 11487.
[81]
Tang S.; Wang S.; Liu Y.; Cong H.; Lei A. Angew. Chem. Int. Ed. 2018, 57, 4737.
[82]
Liu K.; Tang S.; Wu T.; Wang S.; Zou M.; Cong H.; Lei A. Nat. Commun. 2019, 10, 639.
[83]
Wu Y.; Jiang S.; Song R.; Li J. Chem. Commun. 2019, 55, 4371.
[84]
Chen S.; Li Y.; Xiang S.; Li S.; Tan B. Chem. Commun. 2021, 57, 8512.
[85]
Feng C.; Liu X.; She Y.; Shen Z.; Li M. Chin. Chem. Lett. 2023, 34, 107935.
[86]
Wang Z.; Cheng Q.; Peng R.; Yan P.; Zeng R.; Tian W.; Pan B.; Gu J.; Li Y.; Ouyang Q. J. Org. Chem. 2022, 87, 4742.
[87]
Zincke Th.; Heuser G.; M?ller W. Justus Liebigs Ann. Chem. 1904, 333, 296.
[88]
Ritter J. J.; Kalish J. J. Am. Chem. Soc. 1948, 70, 4048.
[89]
Lund H.; Tegnér C.; Takman B. Acta Chem. Scand. 1957, 11, 1323.
[90]
Shine H. J.; Silber J. J.; Bussey R. J.; Okuyama T. J. Org. Chem. 1972, 37, 2691.
[91]
Blackburn G. M.; Will J. P. J. Chem. Soc., Chem. Commun. 1974, 67.
[92]
Ruhlmann L.; Schulz A.; Giraudeau A.; Messerschmidt C.; Fuhrhop J. H. J. Am. Chem. Soc. 1999, 121, 6664.
[93]
Li Y.; Kamata K.; Kawai T.; Abe J.; Iyoda T. J. Chem. Soc., Perkin 1 2002, 1135.
[94]
Li Y.; Asaoka S.; Yamagishi T.; Iyoda T. Electrochemistry 2004, 72, 171.
[95]
Morofuji T.; Shimizu A.; Yoshida J. Angew. Chem., Int. Ed. 2012, 51, 7259.
[96]
Morofuji T.; Shimizu A.; Yoshida J. J. Am. Chem. Soc. 2013, 135, 5000.
[97]
Herold S.; M?hle S.; Zirbes M.; Richter F.; Nefzger H.; Waldvogel S. R. Eur. J. Org. Chem. 2016, 2016, 1274.
[98]
M?hle S.; Herold S.; Richter F.; Nefzger H.; Waldvogel S. R. ChemElectroChem 2017, 4, 2196.
[99]
Wesenberg L. J.; Herold S.; Shimizu A.; Yoshida J.; Waldvogel S. R. Chem.-Eur. J. 2017, 23, 12096.
[100]
Strekalova S.; Kononov A.; Rizvanov I.; Budnikova Y. RSC Adv. 2021, 11, 37540.
[101]
Taily I. M.; Saha D.; Banerjee P. Org. Lett. 2022, 24, 2310.
[102]
Fu Y.; Zhang L.; Sun M.; Cao L.; Yang L.; Cheng R.; Ma Y.; Ye J. Eur. J. Org. Chem. 2023, 26, e202300553.
[103]
Morofuji T.; Shimizu A.; Yoshida J. J. Am. Chem. Soc. 2014, 136, 4496.
[104]
Morofuji T.; Shimizu A.; Yoshida J. J. Am. Chem. Soc. 2015, 137, 9816.
[105]
De Robillard G.; Makni O.; Cattey H.; Andrieu J.; Devillers C. H. Green Chem. 2015, 17, 4669.
[106]
Yu Y.; Yuan Y.; Liu H.; He M.; Yang M.; Liu P.; Yu B.; Dong X.; Lei A. Chem. Commun. 2019, 55, 1809.
[107]
Wang J.-H.; Lei T.; Nan X.-L.; Wu H.-L.; Li X.-B.; Chen B.; Tung C.-H.; Wu L.-Z. Org. Lett. 2019, 21, 5581.
[108]
Sun M.; Zhou Y.; Li L.; Wang L.; Ma Y.; Li P. Org. Chem. Front. 2021, 8, 754.
[109]
Buglioni L.; Besla? M.; No?l T. J. Org. Chem. 2021, 86, 16195.
[110]
Zhou N.; Zhao J.; Sun C.; Lai Y.; Ruan Z.; Feng P. J. Org. Chem. 2021, 86, 16059.
[111]
Xu H.-C.; Campbell J. M.; Moeller K. D. J. Org. Chem. 2014, 79, 379.
[112]
Hu X.; Zhang G.; Nie L.; Kong T.; Lei A. Nat. Commun. 2019, 10, 5467.
[113]
Zhang Y.; Lin Z.; Ackermann L. Chem.-Eur. J. 2021, 27, 242.
[114]
Peng X.; Zhao J.; Ma G.; Wu Y.; Hu S.; Ruan Z.; Feng P. Green Chem. 2021, 23, 8853.
[115]
Puthanveedu M.; Khamraev V.; Brieger L.: Strohmann C.; Antonchick A. P. Chem.-Eur. J. 2021, 27, 8008.
[116]
Zhang Y.-Z.; Mo Z.-Y.; Wang H.-S.; Wen X.-A.; Tang H.-T.; Pan Y.-M. Green Chem. 2019, 21, 3807.
[117]
Luo M.-J.; Ouyang X.-H.; Zhu Y.-P.; Li Y.; Li J.-H. Green Chem. 2021, 23, 9024.
[118]
Wang H.; Zheng Y.; Xu H.; Zou J.; Jin C. Front. Chem. 2022, 10, 950635.
[119]
Morofuji T.; Shimizu A.; Yoshida J. Chem.-Eur. J. 2015, 21, 3211.
[120]
Ohno Y.; Ando S.; Furusho D.; Hifumi R.; Nagata Y.; Tomita I.; Inagi S. Org. Lett. 2023, 25, 3951.
[121]
Zhao H.; Liu Z.; Song J.; Xu H. Angew. Chem., Int. Ed. 2017, 56, 12732.
[122]
Zhao H.; Xu P.; Song J.; Xu H. Angew. Chem., Int. Ed. 2018, 57, 15153.
[123]
Zhang S.; Li L.; Xue M.; Zhang R.; Xu K.; Zeng C. Org. Lett. 2018, 20, 3443.
[124]
Zhang P.; Li B.; Niu L.; Wang L.; Zhang G.; Jia X.; Zhang G.; Liu S.; Ma L.; Gao W.; Qin D.; Chen J. Adv. Synth. Catal. 2020, 362, 2342.
[125]
Wang Q.; Zhang X.; Wang P.; Gao X.; Zhang H.; Lei A. Chin. J. Chem. 2021, 39, 143.
[126]
Zhang H.; Ye Z.; Chen N.; Chen Z.; Zhang F. Green Chem. 2022, 24, 1463.
[127]
Wan H.; Li D.; Xia H.; Yang L.; Alhumade H.; Yi H.; Lei A. Chem. Commun. 2022, 58, 665.
[128]
Zhao H.; Hou Z.; Liu Z.; Zhou Z.; Song J.; Xu H. Angew. Chem., Int. Ed. 2017, 56, 587.
[129]
Zhao H.; Zhuang J.; Xu H. ChemSusChem 2021, 14, 1692.
[130]
Duan Z.; Zhang L.; Zhang W.; Lu L.; Zeng L.; Shi R.; Lei A. ACS Catal. 2020, 10, 3828.
[131]
Yang G.; Wang Y.; Qiu Y. Chin. J. Org. Chem. 2021, 41, 3935. (in Chinese)
[131]
( 杨光, 王衍伟, 仇友爱, 有机化学, 2021, 41, 3935.)
[132]
Li P.; Zhang T.; Mushtaq M. A.; Wu S.; Xiang X.; Yan D. Chem. Rec. 2021, 21, 841.
[133]
Huang H.; Steiniger K. A.; Lambert T. H. J. Am. Chem. Soc. 2022, 144, 12567.
[134]
Qian L.; Shi M. Chem. Commun. 2023, 59, 3487.
[135]
Decker F.; Cattarin S. In Encyclopedia of Electrochemical Power Sources, Elsevier, Amsterdam, 2009, pp. 1-9.
[136]
Huang H.; Strater Z. M.; Rauch M.; Shee J.; Sisto T. J.; Nuckolls C.; Lambert T. H. Angew. Chem., Int. Ed. 2019, 58, 13318.
[137]
Hou Z.; Xu H. ChemElectroChem 2021, 8, 1571.
[138]
Wu S.; ?urauskas J.; Domański M.; Hitzfeld P. S.; Butera V.; Scott D. J.; Rehbein J.; Kumar A.; Thyrhaug E.; Hauer J.; Barham J. P. Org. Chem. Front. 2021, 8, 1132.
[139]
Huang H.; Lambert T. H. Angew. Chem., Int. Ed. 2021, 60, 11163.
[140]
Hou Z.-W.; Yan H.; Song J.; Xu H.-C. Green Chem. 2023, 25, 7959.
[141]
Zhang L.; Liardet L.; Luo J.; Ren D.; Gr?tzel M.; Hu X. Nat. Catal. 2019, 2, 366.
[142]
Carey F. A.; Sundberg R. J. Advanced Organic Chemistry, Springer US, Boston, MA, 2007.
文章导航

/