研究论文

以路易斯碱硼烷为氢供体电催化还原喹啉及酮

  • 陈红斌 ,
  • 杨思佳 ,
  • 叶智鹏 ,
  • 陈凯 ,
  • 向皞月 ,
  • 阳华
展开
  • 中南大学化学化工学院 长沙 410083
共同第一作者

收稿日期: 2023-10-30

  修回日期: 2023-12-28

  网络出版日期: 2024-01-12

基金资助

国家自然科学基金(22078370); 国家自然科学基金(22078369); 国家自然科学基金(22003077); 国家自然科学基金基础科学中心项目(72088101); 湖南省自然科学基金(2022JJ20055); 湖南省自然科学基金(2020JJ4682)

Electrocatalytic Reduction of Quinolines and Ketones by Using Lewis Base-Ligated Borane as a Hydrogen Donor

  • Hongbing Chen ,
  • Sijia Yang ,
  • Zhipeng Ye ,
  • Kai Chen ,
  • Haoyue Xiang ,
  • Hua Yang
Expand
  • College of Chemistry and Chemical Engineering, Central South University, Changsha 410083
These authors contributed equally to this work.

Received date: 2023-10-30

  Revised date: 2023-12-28

  Online published: 2024-01-12

Supported by

National Natural Science Foundation of China(22078370); National Natural Science Foundation of China(22078369); National Natural Science Foundation of China(22003077); Basic Science Center Project for National Natural Science Foundation of China(72088101); Natural Science Foundation of Hunan Province(2022JJ20055); Natural Science Foundation of Hunan Province(2020JJ4682)

摘要

以路易斯碱-硼烷络合物(LB-BH3)为氢供体, 开发了一种通用的、直接的喹啉电化学还原策略, 从而快速获得多种具有生物活性的1,2,3,4-四氢喹啉类化合物. 此外, 该方法还被成功地应用于其他双键的还原, 包括C=O, N=N和 C=C. 该方法具有操作简单、反应条件温和及底物范围广等特点.

本文引用格式

陈红斌 , 杨思佳 , 叶智鹏 , 陈凯 , 向皞月 , 阳华 . 以路易斯碱硼烷为氢供体电催化还原喹啉及酮[J]. 有机化学, 2024 , 44(3) : 966 -971 . DOI: 10.6023/cjoc202310029

Abstract

By employing Lewis base-ligated boranes (LB-BH3) as the hydrogen donor, a general and straightforward electrochemical protocol for transfer hydrogenation of quinoline was developed to access a variety of bioactive 1,2,3,4- tetrahydroquinolines. Moreover, this developed protocol was successfully applied to the reduction of other double bonds, including C=O, N=N and C=C bonds. This method has some characteristics such as simple operation, mild reaction conditions and a wide range of substrates.

参考文献

[1]
(a) Torres G. M.; Frauenlob R.; Franke R.; B?rner A. Catal. Sci. Technol. 2015, 5, 34.
[1]
(b) Severin R.; Doye S. Chem. Soc. Rev. 2007, 36, 1407.
[2]
(a) da Silva A. P.; Maia A. C. S.; Navarro M. Tetrahedron Lett. 2005, 46, 3233.
[2]
(b) Toti A.; Frediani P.; Salvini A.; Rosi L.; Giolli C. J. Organomet. Chem. 2005, 690, 3641.
[2]
(c) da Silva A. P.; Mota S. D. C.; Bieber L. W.; Navarro M. Tetrahedron 2006, 62, 5435.
[2]
(d) Schm?ger C.; Stolle A.; Bonrath W.; Ondruschka B.; Keller T.; Jandt K. D. ChemSusChem 2009, 2, 77.
[2]
(e) Sahoo M. K.; Sivakumar G.; Jadhav S.; Shaikh S.; Balaraman E. Org. Biomol. Chem. 2021, 19, 5289.
[3]
(a) Jiao K.-J.; Xing Y.-K.; Yang Q.-L.; Qiu H.; Mei T.-S. Acc. Chem. Res. 2020, 53, 300.
[3]
(b) Shi S.-H.; Liang Y.; Jiao N. Chem. Rev. 2020, 121, 485.
[3]
(c) Siu J. C.; Fu N.; Lin S. Acc. Chem. Res. 2020, 53, 547.
[3]
(d) Wang F.; Stahl S. S. Acc. Chem. Res. 2020, 53, 561.
[3]
(e) Guo S.; Wu Y.; Wang C.; Gao Y.; Li M.; Zhang B.; Liu C. Nat. Commun. 2022, 13, 5297.
[4]
(a) Huang B.; Li Y.; Yang C.; Xia W. Chem. Commun. 2019, 55, 6731.
[4]
(b) Li J.; He L.; Liu X.; Cheng X.; Li G. Angew. Chem., Int. Ed. 2019, 58, 1759.
[4]
(c) Liu J.; Lu L.; Wood D.; Lin S. ACS Cent. Sci. 2020, 6, 1317.
[4]
(d) Yang J.; Qin H.; Yan K.; Cheng X.; Wen J. Adv. Synth. Catal. 2021, 363, 5407.
[4]
(e) Zhou H.; Fan R.; Yang J.; Sun X.; Liu X.; Wang X.-C. J. Org. Chem. 2022, 87, 14536.
[5]
(a) Bálint J.; Egri G.; Fogassy E.; B?cskei Z.; Simon K.; Gajáry A.; Friesz A. Tetrahedron: Asymmetry 1999, 10, 1079.
[5]
(b) Li G.; Wang C.; Li Y.; Shao K.; Yu G.; Wang S.; Guo X.; Zhao W.; Nakamura H. Chem. Commun. 2020, 56, 7333.
[6]
(a) Chen F.; Sahoo B.; Kreyenschulte C.; Lund H.; Zeng M.; He L.; Junge K.; Beller M. Chem. Sci. 2017, 8, 6239.
[6]
(b) Konnerth H.; Prechtl M. H. G. Green Chem. 2017, 19, 2762.
[6]
(c) Yang C.-H.; Chen X.; Li H.; Wei W.; Yang Z.; Chang J. Chem. Commun. 2018, 54, 8622.
[6]
(d) Gong Y.; He J.; Wen X.; Xi H.; Wei Z.; Liu W. Org. Chem. Front. 2021, 8, 6901.
[6]
(e) Xie G.; T?r?k B. Catalysts 2022, 12, 1578.
[7]
(a) Fujita K.; Yamamoto K.; Yamaguchi R. Org. Lett. 2002, 4, 2691.
[7]
(b) Omar-Amrani R.; Thomas A.; Brenner E.; Schneider R.; Fort Y. Org. Lett. 2003, 5, 2311.
[7]
(c) Kubo T.; Katoh C.; Yamada K.; Okano K.; Tokuyama H.; Fukuyama T. Tetrahedron 2008, 64, 11230.
[7]
(d) Cirujano F. G.; Leyva‐Pérez A.; Corma A.; Llabrés?i?Xamena F. X. ChemCatChem 2013, 5, 538.
[7]
(e) Song G.; Nong D.-Z.; Li J.-S.; Li G.; Zhang W.; Cao R.; Wang C.; Xiao J.; Xue D. J. Org. Chem. 2022, 87, 10285.
[7]
(f) Zubar V.; Brzozowska A.; Sklyaruk J.; Rueping M. Organometallics 2022, 41, 1743.
[8]
(a) Chen F.; Surkus A.-E.; He L.; Pohl M.-M.; Radnik J.; Topf C.; Junge K.; Beller M. J. Am. Chem. Soc. 2015, 137, 11718.
[8]
(b) Chatterjee B.; Kalsi D.; Kaithal A.; Bordet A.; Leitner W.; Gunanathan C. Catal. Sci. Technol. 2020, 10, 5163.
[8]
(c) Prybil J. W.; Wallace R.; Warren A.; Klingman J.; Vaillant R.; Hall M. B.; Yang X.; Brennessel W. W.; Chin R. M. ACS Omega 2020, 5, 1528.
[8]
(d) Zhao J.; Yuan H.; Qin X.; Tian K.; Liu Y.; Wei C.; Zhang Z.; Zhou L.; Fang S. Catal. Lett. 2020, 150, 2841.
[8]
(e) El‐Shahat M. J. Heterocycl. Chem. 2022, 59, 399.
[8]
(f) Li Y.-N.; Zhou M.-X.; Wu J.-B.; Wang Z.; Zeng Y.-F. Org. Biomol. Chem. 2022, 20, 9613.
[8]
(g) Wang M.; Zhang C.; Ci C.; Jiang H.; Dixneuf P. H.; Zhang M. J. Am. Chem. Soc. 2023, 145, 10967.
[9]
(a) Fujita K.-I.; Kitatsuji C.; Furukawa S.; Yamaguchi R. Tetrahedron Lett. 2004, 45, 3215.
[9]
(b) Abarca B.; Adam R.; Ballesteros R. Org. Biomol. Chem. 2012, 10, 1826.
[9]
(c) Lu Y.; Yamamoto Y.; Almansour A. I.; Arumugam N.; Kumar R. S.; Bao M. Chin. J. Catal. 2018, 39, 1746.
[9]
(d) Hervochon J.; Dorcet V.; Junge K.; Beller M.; Fischmeister C. Catal. Sci. Technol. 2020, 10, 4820.
[9]
(e) Yadav S.; Chaudhary D.; Maurya N. K.; Kumar D.; Ishu K.; Kuram M. R. Chem. Commun. 2022, 58, 4255.
[10]
(a) Ye Z.-P.; Gao J.; Duan X.-Y.; Guan J.-P.; Liu F.; Chen K.; Xiao J.-A.; Xiang H.-Y.; Yang H. Chem. Commun. 2021, 57, 8969.
[10]
(b) Box J.-R.; Avanthay M.-E.; Poole D.-L.; Lennox A.-J. J. Angew. Chem., Int. Ed. 2023, 62, e202218195.
[10]
(c) Chen T.-S.; Long H.; Gao Y.-X.; Xu H.-C. Angew. Chem., Int. Ed. 2023, 62, e202310138.
[10]
(d) Chen H.-J.; Zhu C.; Yue H.-F.; Rueping M. Angew. Chem., Int. Ed. 2023, 62, 202306498.
[11]
(a) Xia P. J.; Song D.; Ye Z. P.; Hu Y. Z.; Xiao J. A.; Xiang H. Y.; Chen X. Q.; Yang H. Angew. Chem., Int. Ed. 2020, 59, 6706.
[11]
(b) Xia P.-J.; Ye Z.-P.; Hu Y.-Z.; Xiao J.-A.; Chen K.; Xiang H.-Y.; Chen X.-Q.; Yang H. Org. Lett. 2020, 22, 1742.
[12]
(a) Chen D. W.; Ochiai M. J. Org. Chem. 1999, 64, 6804.
[12]
(b) Rudolph J.; Schmidt F.; Bolm C. Adv. Synth. Catal. 2004, 346, 867.
[12]
(c) Kokura A.; Tanaka S.; Ikeno T.; Yamada T. Org. Lett. 2006, 8, 3025.
[12]
(d) Vieira T. O.; Alper H. Chem. Commun. 2007, 2710.
[12]
(e) Nolte C.; Mayr H. Eur. J. Org. Chem. 2010, 1435.
[12]
(f) Sakai N.; Fujii K.; Nabeshima S.; Ikeda R.; Konakahara T. Chem. Commun. 2010, 46, 3173.
[12]
(g) Vile J.; Carta M.; Bezzu C. G.; McKeown N. B. Polym. Chem. 2011, 2, 2257.
[12]
(h) Touge T.; Nara H.; Fujiwhara M.; Kayaki Y.; Ikariya T. J. Am. Chem. Soc. 2016, 138, 10084.
[12]
(i) Pi D.; Zhou H.; Cui P.; He R.; Sui Y. ChemistrySelect 2017, 2, 3976.
[12]
(j) Ling F.; Nian S.; Chen J.; Luo W.; Wang Z.; Lv Y.; Zhong W. J. Org. Chem. 2018, 83, 10749.
[12]
(k) Ishida S.; Suzuki H.; Uchida S.; Yamaguchi E.; Itoh A. Eur. J. Org. Chem. 2019, 2019, 7483.
[12]
(l) Li W.; Cui X.; Junge K.; Surkus A.-E.; Kreyenschulte C.; Bartling S.; Beller M. ACS Catal. 2019, 9, 4302.
[12]
(m) Wang Y.; Zhu L.; Shao Z.; Li G.; Lan Y.; Liu Q. J. Am. Chem. Soc. 2019, 141, 17337.
[12]
(n) Fang H. Q.; Oestreich M. Angew. Chem., Int. Ed. 2020, 59, 11394.
[12]
(o) Guo L.; Yang C.; Zhang X.; Wang L.; Xia R. Y.; Xia W. Synlett 2022, 33, 1302.
[12]
(p) Wu J.; Yan B.; Meng J.; Yang E.; Ye X.; Yao Q. Org. Biomol. Chem. 2022, 20, 8638.
[12]
(q) Yu R. R.; Hao F. Y.; Zhang X. Y.; Fang Z. B.; Jin Z. N.; Liu G. Y.; Dai G. L.; Wu J. S. J. Org.Chem. 2023, 88, 8279.
文章导航

/