综述与进展

有机光电催化合成研究进展

  • 叶增辉 ,
  • 刘华清 ,
  • 张逢质
展开
  • 杭州医学院药学院 杭州 310053

收稿日期: 2023-10-03

  修回日期: 2023-12-28

  网络出版日期: 2024-01-12

基金资助

国家自然科学基金(22301055)

Recent Advances in Organic Electrophotocatalytic Synthesis

  • Zenghui Ye ,
  • Huaqing Liu ,
  • Fengzhi Zhang
Expand
  • School of Pharmacy, Hangzhou Medical College, Hangzhou 310053

Received date: 2023-10-03

  Revised date: 2023-12-28

  Online published: 2024-01-12

Supported by

National Natural Science Foundation of China(22301055)

摘要

有机光电催化合成是一种将电催化与光催化合成策略相结合的新型反应模式, 目前关于此类反应的研究仍处于起步阶段. 近几年, 随着该策略的兴起, 越来越多的报道证明了这种新型反应模式的可行性与其实现新反应的潜力. 利用光能和电能作为反应的驱动力, 无需使用化学计量的氧化剂或还原剂, 该策略能够在相对温和的条件下实现有效且高选择性的氧化还原反应, 被广泛应用于氧化还原及偶联反应等众多反应体系. 总结了近些年有机光电化学合成的最新研究进展, 根据反应的成键类型进行系统分类, 并介绍反应机理及其优势和特点, 最后对该研究方向的发展进行了展望.

本文引用格式

叶增辉 , 刘华清 , 张逢质 . 有机光电催化合成研究进展[J]. 有机化学, 2024 , 44(3) : 840 -870 . DOI: 10.6023/cjoc202310034

Abstract

Organic electrophotocatalysis synthesis is recognized as a powerful and scalable methodology for organic synthesis combining photocatalysis and electrolysis synthesis. However, the research in organic electrophotocatalytic synthesis is still in an early stage. In recent years, with the emergence of this strategy, an increasing number of reports have demonstrated the viability and potential of this new methodology to achieve unprecedented transformations. By harnessing light energy and electric energy as driving forces for the reaction, without relying on stoichiometric oxidants or reductants, it enables effective and highly selective redox reactions under relatively mild conditions. Consequently, it finds wide applications in various reaction systems including redox and cross coupling reactions. A comprehensive overview of the latest advancements in organic electrophotocatalysis synthesis in recent years while categorizing the reactions based on their bonding types is provided. The reaction mechanism, advantages and characteristics are also introduced. Finally, the future development direction of organic electrophotocatalytic synthesis is prospected.

参考文献

[1]
Yan M.; Kawamata Y.; Baran P. S. Chem. Rev. 2017, 117, 13230.
[2]
Qiu Y.; Zhu C.; Stangier M.; Struwe J.; Ackermann L. CCS Chem. 2021, 3, 1529.
[3]
Faraday M. Ann. Phys. Leipzig. 1834, 47, 438.
[4]
Kolbe H. J. Prakt. Chem. 1847, 41, 138.
[5]
Haber F. Z. Elektrochem. Angew. Phys. Chem. 1898, 5, 235.
[6]
Wiebe A.; Gieshoff T.; M?hle S.; Rodrigo E.; Zirbes M.; Waldvogel S. R. Angew. Chem.,Int. Ed. 2018, 57, 5594.
[7]
Sauermann N.; Meyer T. H.; Qiu Y.; Ackermann L. ACS Catal. 2018, 8, 7086.
[8]
Yuan Y.; Lei A. Acc. Chem. Res. 2019, 52, 3309.
[9]
Qiu Y.; Kong W.-J.; Struwe J.; Sauermann N.; Rogge T.; Scheremetjew A.; Ackermann L. Angew. Chem.,Int. Ed. 2018, 57, 5828.
[10]
Wang X.; Xu X.; Wang Z.; Fang P.; Mei T. Chin. J. Org. Chem. 2020, 40, 3738. (in Chinese)
[10]
( 王向阳, 徐学涛, 王振华, 方萍, 梅天胜, 有机化学, 2020, 40, 3738.)
[11]
Qiu Y.; Stangier M.; Meyer T. H.; Oliveira J. C. A.; Ackermann L. Angew. Chem.,Int. Ed. 2018, 57, 14179.
[12]
Barham J. P.; K?nig B. Angew. Chem.,Int. Ed. 2020, 59, 11732.
[13]
Yu Y.; Guo P.; Zhong J.-S.; Yuan Y.; Ye K.-Y. Org. Chem. Front. 2020, 7, 131.
[14]
Capaldo L.; Quadri L. L.; Ravelli D. Angew. Chem.,Int. Ed., 2019, 58, 17508.
[15]
Moutet J.-C.; Reverdy G. Tetrahedron Lett. 1979, 20, 2389.
[16]
Colomer I.; Batchelor-McAuley C.; Odell B.; Donohoe T. J.; Compton R. G. J. Am. Chem. Soc. 2016, 138, 8855.
[17]
Romero N. A.; Nicewicz D. A. Chem. Rev. 2016, 116, 10075.
[18]
Shaw M. H.; Twilton J.; MacMillan D. W. C. J. Org. Chem. 2016, 81, 6898.
[19]
Crisenza G. E. M.; Mazzarella D.; Melchiorre P. J. Am. Chem. Soc. 2020, 142, 5461.
[20]
Narayanam J. M. R.; Stephenson C. R. J. Chem. Soc. Rev. 2011, 40, 102.
[21]
Goddard J.-P.; Ollivier C.; Fensterbank L. Acc. Chem. Res. 2016, 49, 1924.
[22]
Yoshida J.-I.; Kataoka K.; Horcajada R.; Nagaki A. Chem. Rev. 2008, 108, 2265.
[23]
Francke R.; Little R. D. Chem. Soc. Rev. 2014, 43, 2492.
[24]
Moeller K. D. Chem. Rev. 2018, 118, 4817.
[25]
Liu J.; Lu L.; Wood D.; Lin S. ACS Cent. Sci. 2020, 6, 1317.
[26]
Siu J.C.; Fu N.; Lin S. Acc. Chem. Res. 2020, 53, 547.
[27]
Zhu C.; Ang N. W. J.; Meyer T. H.; Qiu Y.; Ackermann L. ACS Cent. Sci. 2021, 7, 415.
[28]
Novaes L. F. T.; Liu J.; Shen Y.; Lu L.; Meinhardt J. M.; Lin S. Chem. Soc. Rev. 2021, 50, 7941.
[29]
Lv S.; Han X.; Wang J.-Y.; Zhou M.; Wu Y.; Ma L.; Niu L.; Gao W.; Zhou J.; Hu W.; Cui Y.; Chen J. Angew. Chem.,Int. Ed. 2020, 59, 11583.
[30]
Ye Z., Wu Y., Chen N., Zhang H., Zhu K., Ding M., Liu M., Li Y., Zhang F. Nat. Commun. 2020, 11, 3628.
[31]
Shao D.; Wu Y.; Hu S.; Gao W.; Du Y.; Jia X.; Liu S.; Zhou M.; Chen J. ACS Sustainable Chem. Eng. 2022, 10, 10294.
[32]
Moutet J.-C.; Reverdy G. J. Chem. Soc.,Chem. Commun. 1982, 654.
[33]
Scheffold R.; Orlinski R. J. Am. Chem. Soc. 1983, 105, 7200.
[34]
Yan H.; Hou Z.-W.; Xu H.-C. Angew. Chem.,Int. Ed. 2019, 58, 4592.
[35]
Matsui J. K.; Primer D. N.; Molander G. A. Chem. Sci. 2017, 8, 3512.
[36]
Yan H.; Song J.; Zhu S.; Xu H.-C. CCS Chem. 2021, 3, 317.
[37]
Qiu Y.; Scheremetjew A.; Finger L.H.; Ackermann L. Chem.-Eur. J. 2020, 26, 3241.
[38]
Qi J.; Xu J.; Ang H. T.; Wang B.; Gupta N. K.; Dubbaka S. R.; O’Neill P.; Mao X.; Lum Y.; Wu J. J. Am. Chem. Soc. 2023, 145, 24965.
[39]
Huang H.; Strater Z. M.; Lambert T. H. J. Am. Chem. Soc. 2020, 142, 1698.
[40]
Huang H.; Strater Z. M.; Rauch M.; Shee J.; Sisto T. J.; Nuckolls C.; Lambert T. H. Angew. Chem.,Int. Ed. 2019, 58, 13318.
[41]
Xu P.; Chen P.-Y.; Xu H.-C. Angew. Chem.,Int. Ed. 2020, 59, 14275.
[42]
Lai X.-L.; Shu X.-M.; Song J.; Xu H.-C. Angew. Chem.,Int. Ed. 2020, 59, 10626.
[43]
Capaldo L.; Quadri L. L.; Merli D.; Ravelli D. Chem. Commun. 2021, 57, 4424.
[44]
Chen Y.-J.; Deng W.-H.; Guo J.-D.; Ci R.-N.; Zhou C.; Chen B.; Li X.-B.; Guo X.-N.; Liao R.-Z.; Tung C.-H.; Wu L.-Z. J. Am. Chem. Soc. 2022, 144, 17261.
[45]
Wang K.; Tian Y.; Li B.; Wang L.; Gao W.; Jia X.; Wang R.; Zhu Y.; Chen J. Green Synth. Catal. 2022, DOI: 10.1016/ j.gresc.2022.06.006.
[46]
Yang Z.; Yang D.; Zhang S. J.; Tan C.; Li J.; Wang S.; Zhang H.; Huang Z.; Lei A. J. Am. Chem. Soc. 2022, 144, 13895.
[47]
Gong M.; Huang M.; Li Y.; Zhang J.; Kim J. K.; Kim J. S.; Wu Y. Green Chem. 2022, 24, 837.
[48]
Yang K.; Lu J.; Li L.; Luo S.; Fu N. Chem.-Eur. J. 2022, 28, e202202370.
[49]
Yang K.; Wang Y.; Luo S.; Fu N. Chem.-Eur. J. 2023, 29, e202203962.
[50]
Lai X.-L.; Xu H.-C. J. Am. Chem. Soc. 2023, 145, 18753.
[51]
Fan W.; Zhao X.; Deng Y.; Chen P.; Wang F.; Liu G. J. Am. Chem. Soc. 2022, 144, 21674.
[52]
Tan Z.; Jiang Y.; Xu K.; Zeng C. J. Catal. 2023, 417, 473.
[53]
Wu S.; ?urauskas J.; Domański M.; Hitzfeld P. S.; Butera V.; Scott D. J.; Rehbein J.; Kumar A.; Thyrhaug E.; Hauer J.; Barham J. P. Org. Chem. Front. 2021, 8, 1132.
[54]
Huang H.; Lambert T. H. Angew. Chem.,Int. Ed. 2020, 59, 658.
[55]
Gerson F.; Plattner G.; Yoshida Z. Mol. Phys. 1971, 21, 1027.
[56]
Weiss R.; Schloter K. Tetrahedron Lett. 1975, 16, 3491.
[57]
Johnson R. W. Tetrahedron Lett. 1976, 17, 589.
[58]
Romero N. A.; Margrey K. A.; Tay N. E.; Nicewicz D. A. Science 2015, 349, 1326.
[59]
Niu L.; Yi H.; Wang S.; Liu T.; Liu J.; Lei A. Nat. Commun. 2017, 8, 14226.
[60]
Tay N. E. S.; Nicewicz D. A. J. Am. Chem. Soc. 2017, 139, 16100.
[61]
Wang F.; Stahl S. S. Angew. Chem.,Int. Ed. 2019, 58, 6385.
[62]
Martínez C.; Mu?iz K. Angew. Chem.,Int. Ed. 2015, 54, 8287.
[63]
Niu L.; Jiang C.; Liang Y.; Liu D.; Bu F.; Shi R.; Chen H.; Chowdhury A. D.; Lei A. J. Am. Chem. Soc. 2020, 142, 17693.
[64]
Huang H.; Lambert T. H. Angew. Chem.,Int. Ed. 2021, 60, 11163.
[65]
Shen T.; Lambert T. H. J. Am. Chem. Soc. 2021, 143, 8597.
[66]
Shen T.; Lambert T. H. Science 2021, 371, 620.
[67]
Huang H.; Lambert T. H. J. Am. Chem. Soc. 2022, 144, 18803.
[68]
Wang Y.; Li L.; Fu N. ACS Catal. 2022, 12, 10661.
[69]
Hou Z.-W.; Yan H.; Song J.; Xu H.-C. Green Chem. 2023. 25, 7959.
[70]
Zhang W.; Carpenter K. L.; Lin S. Angew. Chem.,Int. Ed. 2020, 59, 409.
[71]
Feldmeier C.; Bartling H.; Magerl K.; Gschwind R. M. Angew. Chem.,Int. Ed. 2015, 54, 1347.
[72]
de?Gonzalo G.; Fraaije M. W. ChemCatChem 2013, 5, 403.
[73]
Huang H.; Lambert T. H. J. Am. Chem. Soc. 2021, 143, 7247.
[74]
Shen T.; Li Y.-L.; Ye K.-Y.; Lambert T. H. Nature 2023, 614, 275.
[75]
Bi H.; Zhou Y.; Jiang W.; Liu J. Adv. Synth. Catal. 2022, 364, 1732.
[76]
Zhao Y.; Duan M.; Deng C.; Yang J.; Yang S.; Zhang Y.; Sheng H.; Li Y.; Chen C.; Zhao J. Nat. Commun. 2023, 14, 1943.
[77]
Liu X.; Chen Z.; Xu S.; Liu G.; Zhu Y.; Yu X.; Sun L.; Li F. J. Am. Chem. Soc. 2022, 144, 19770.
[78]
Kim H.; Kim H.; Lambert T. H.; Lin S. J. Am. Chem. Soc. 2020, 142, 2087.
[79]
Ghosh I.; Ghosh T.; Bardagi J. I.; K?nig B. Science 2014, 346, 725.
[80]
Cowper N. G. W.; Chernowsky C. P.; Williams O. P.; Wickens Z. K. J. Am. Chem. Soc. 2020, 142, 2093.
[81]
Rieth A. J.; Gonzalez M. I.; Kudisch B.; Nava M.; Nocera D. G. J. Am. Chem. Soc. 2021, 143, 14352.
[82]
Chen Y.-J.; Lei T.; Hu H.-L.; Wu H.-L.; Zhou S.; Li X.-B.; Chen B.; Tung C.-H.; Wu L.-Z. Matter 2021, 4, 2354.
[83]
Chernowsky C. P.; Chmiel A. F.; Wickens Z. K. Angew. Chem.,Int. Ed. 2021, 60, 21418.
[84]
Tian X.; Karl T. A.; Reiter S.; Yakubov S.; de Vivie-Riedle R.; K?nig B.; Barham J. P. Angew. Chem.,Int. Ed. 2021, 60, 20817.
[85]
Zhong P.-F.; Tu J.-L.; Zhao Y.; Zhong N.; Yang C.; Guo L.; Xia W. Nat. Commun. 2023, 14, 6530.
文章导航

/