研究论文

卤化钠促进硫-硅键活化及其在非对称硫醚合成中的应用

  • 梁家仪 ,
  • 杨雅淇 ,
  • 刘建平 ,
  • 徐清 ,
  • 韩立彪
展开
  • a 温州大学化学与材料工程学院 苍南研究院 浙江温州 325035
    b 浙江扬帆新材料股份有限公司 浙江上虞 312369

收稿日期: 2023-10-31

  修回日期: 2023-12-11

  网络出版日期: 2024-01-12

基金资助

浙江省领军创新创业团队引进计划(2022R01021); 国家自然科学基金(21672163)

Sodium Halides-Promoted S—Si Bond Activation and Its Application in the Synthesis of Unsymmetrical Thioethers

  • Jiayi Liang ,
  • Yaqi Yang ,
  • Jianping Liu ,
  • Qing Xu ,
  • Libiao Han
Expand
  • a Cangnan Institute, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035
    b Zhejiang Yangfan New Materials Co., Ltd., Shangyu, Zhejiang 312369

Received date: 2023-10-31

  Revised date: 2023-12-11

  Online published: 2024-01-12

Supported by

Leading Innovative and Entrepreneur Team Introduction Program of Zhejiang(2022R01021); National Natural Science Foundation of China(21672163)

摘要

研究发现, 与常规方法中需使用氟盐为活化试剂、通过形成较强的硅-氟键来活化有机硅化合物中的元素-硅键不同, 使用简单无机盐NaBr甚至食盐NaCl即可通过形成较弱的硅-卤键(X=Br, Cl), 有效地活化硫-硅键. 利用该方法, 可使用无机卤化钠促进有机硫硅化合物与非氟卤代烷烃的反应, 在无碱的中性条件下合成非对称烷基硫醚. 反应同时生成了卤硅烷副产物TMSX, 亦可进行回收. 该方法还可进一步推广到非氟卤代杂芳烃和缺电子卤代芳烃合成非对称杂芳基或缺电子芳基硫醚, 说明该方法具有较广的底物适用范围.

本文引用格式

梁家仪 , 杨雅淇 , 刘建平 , 徐清 , 韩立彪 . 卤化钠促进硫-硅键活化及其在非对称硫醚合成中的应用[J]. 有机化学, 2024 , 44(5) : 1658 -1666 . DOI: 10.6023/cjoc202310035

Abstract

Unlike the conventional methods that require the use of fluoride salts for activation of the E—Si bonds of organosilicon compounds by forming the strong Si—F bond, simple inorganic salt NaBr even the table salt NaCl could be used to effectively activate the S—Si bond through formation of the relatively weaker Si—X (X=Br, Cl) bonds. Employing this method, inorganic sodium halides can be used to promote the reaction of thiosilanes with non-fluorine alkyl halides, producing unsymmetrical alkyl thioethers under base-free neutral conditions. The reaction produced silyl halides TMSX as byproduct, which could be recovered. This method could also be extended to non-fluorine heteroaryl halides and electron-deficient aryl halides for the synthesis of heteroaryl and electron-deficient aryl thioethers, revealing the relatively broad substrate scope of the method.

参考文献

[1]
(a) Derieux, C.; Léauté, A.; Brugoux, A.; Jaccaz, D.; Terrier, C.; Pin, J.-P.; Kniazeff, J.; Merrer, J. L.; Becker, J. A. J. Neuropsychopharmacology 2022, 47, 1680.
[1]
(b) Ahdenov, R.; Mohammadi, A. A.; Makarem, S.; Taheri, S.; Mollabagher, H. Heterocycl. Commun. 2022, 28, 67.
[1]
(c) Elinson, M. N.; Ryzhkova, Y. E.; Vereshchagin, A. N.; Ryzhkov, F. V.; Egorov, M. P. J. Heterocycl. Chem. 2021, 58, 1484.
[1]
(d) Elinson, M. N.; Vereshchagin, A. N.; Korshunov, A. D.; Zaimovskaya, T. A.; Egorov, M. P. Monatsh. Chem. 2018, 149, 1069.
[1]
(e) Jia, H. L.; Li, Q.; Bayaguud, A.; She, S.; Huang, Y. C.; Chen, K.; Wei, Y. G. Sci. Rep. 2017, 7, 12523.
[1]
(f) Kása, P.; Toldi, J.; Farkas, Z.; Joó, F.; Wolff, J. R. Neurochem. Int. 1987, 11, 443.
[2]
(a) Liu, L. Y.; Fan, W.; Li, S. H. ACS Catal. 2023, 13, 2396.
[2]
(b) Ono, Y.; Takeuchi, M.; Zhou, Y.; Isogai, A. Cellulose 2021, 28, 6035.
[2]
(c) Wang, H. M.; Wang, X. Y.; Sun, T. T.; Li, P. X.; Chu, X. M.; Xing, X. T.; Liu, S. J.; Tang, E. J. Cellulose 2021, 28, 11315.
[2]
(d) P??kk?nen, T.; P?nni, R.; Dou, J.; Nuopponenand, M.; Vuorinen, T. Carbohydr. Polym. 2017, 174, 524.
[2]
(e) Shi, H. W.; Yu, C.; Yan, J. Chin. Chem. Lett. 2015, 26, 1117.
[2]
(f) Liu, J. X.; Ma, S. M. Tetrahedron 2013, 69, 10161.
[2]
(g) Ma, S. M.; Liu, J. X.; Li, S. H.; Chen, B.; Cheng, J. J.; Kuang, J. Q.; Liu, Y.; Wan, B. Q.; Wang, Y. L.; Ye, J. T.; Yu, Q.; Yuan, W. M.; Yub, S. C. Adv. Synth. Catal. 2011, 353, 1005.
[2]
(h) Nagano, T.; Jia, Z. H.; Li, X. S.; Yan, M.; Lu, G.; Chan, A. S. C.; Hayashi, T. Chem. Lett. 2010, 39, 929.
[2]
(i) Bennett, S. M.; Tang, Y.; McMaster, D.; Bright, F. V.; Detty, M. R. J. Org. Chem. 2008, 73, 6849.
[3]
(a) Hu, H.; Luo, C.; Wang, B. S.; Lai, T.; Zhang, G. R.; Gao, G. H. Mol. Catal. 2023, 538, 113010.
[3]
(b) Duda, M. L.; Velidandi, A. Results Chem. 2023, 5, 100697.
[3]
(c) Semwal, R.; Ravi, C.; Kumar, R.; Meena, R.; Adimurthy, S. J. Org. Chem. 2019, 84, 792.
[3]
(d) Reddy, V. L.; Prathima, P. S.; Rao, V. J.; Bikshapathi, R. New J. Chem. 2018, 42, 20152.
[3]
(e) Li, L. J.; Xue, M. Y.; Yan, X.; Liu, W. M.; Xu, K.; Zhang, S. Org. Biomol. Chem. 2018, 16, 4615.
[3]
(f) Ghorbani-Choghamarani, A.; Zeinivand, J. Chin. Chem. Lett. 2010, 21, 1083.
[4]
(a) Qian, C. W.; Wang, Y.; Li, X.; Yao, C. S. ChemistrySelect 2023, 8, e202203332.
[4]
(b) Glorius, F.; Ernst, J.; Rakers, L. Synthesis 2017, 49, 260.
[4]
(c) Dandia, A.; Khan, S.; Sharma, R.; Parihar, S.; Parewa, V. ChemistrySelect 2017, 2, 9684.
[4]
(d) Liu, C. K.; Fang, Z.; Yang, Z.; Li, Q. W.; Guo, S. Y.; Zhang, K.; Ouyang, P. K.; Guo, K. Tetrahedron Lett. 2015, 56, 5973.
[4]
(e) Alizadeh, A.; Moafi, L. J. Chem. Res. 2015, 39, 464.
[4]
(f) Dandia, A.; Jain, A. K.; Bhati, D. S. Synth. Commun. 2011, 41, 2905.
[5]
(a) Brahmachari, G.; Bhowmick, A.; Karmakar, I. J. Org. Chem. 2021, 86, 9658.
[5]
(b) Li, X. X.; Wang, Y. X.; Ouyang, Y. X.; Yu, Z. Y.; Zhang, B. B.; Zhang, J. R.; Shi, H. F.; Zuilhof, H.; Du, Y. F. J. Org. Chem. 2021, 86, 9490.
[5]
(c) Korkmaz, E.; Zora, M. J. Org. Chem. 2020, 85, 4937.
[5]
(d) Liu, X.; Dong, Z. B. J. Org. Chem. 2019, 84, 11524.
[5]
(e) Prasanjit Ghosh, P.; Nandi, A. K.; Chhetri, G.; Das, S. J. Org. Chem. 2018, 83, 12411.
[5]
(f) Dong, Z. B.; Balkenhohl, M.; Tan, E.; Knochel, P. Org. Lett. 2018, 20, 7581.
[5]
(g) Gandeepan, P.; Koeller, J.; Ackermann, L. ACS Catal. 2017, 7, 1030.
[5]
(h) Miller, L. M.; Keune, W.-J.; Castagna, D.; Young, L. C.; Duffy, E. L.; Potjewyd, F.; Salgado-Polo, F.; Engel García, P.; Semaan, D.; Pritchard, J. M.; Perrakis, A.; Macdonald, S. J. F.; Jamieson, C.; Watson, A. J. B. J. Med. Chem. 2017, 60, 722.
[5]
(i) Moritz, B.; Stracke, J. O. Electrophoresis 2017, 38, 769.
[5]
(j) Kleingardner, J. G.; Bren, K. L. Acc. Chem. Res. 2015, 48, 1845.
[5]
(k) Lowe, A. B. Polym. Chem. 2010, 1, 17.
[5]
(l) Liu, J.; Yang, J.; Yang, Q.; Wang, G.; Li, Y. Adv. Funct. Mater. 2005, 15, 1297.
[5]
(m) McReynolds, M.; Dougherty, D. J. M.; Hanson, P. R. Chem. Rev. 2004, 104, 2239.
[5]
(n) Liu, L.; Stelmach, J. E.; Natarajan, S. R.; Chen, M. H.; Singh, S. B.; Schwartz, C. D.; Fitzgerald, C. E.; O’Keefe, S. J.; Zaller, D. M.; Schmatz, D. M.; Doherty, J. B. Bioorg. Med. Chem. Lett. 2003, 13, 3979.
[5]
(o) Largeron, M.; Neudorffer, A.; Gramond, J. P.; Fleury, M. B. Ann. Pharm. Fr. 2003, 61, 164.
[5]
(p) Liu, G.; Huth, J. R.; Olejniczak, E. T.; Mendoza, R.; DeVries, P.; Leitza, S.; Reilly, E. B.; Okasinski, G. F.; Fesik, S. W.; von Geldern, T. W. J. Med. Chem. 2001, 44, 1202.
[6]
(a) Rao, Z. P.; Li, X. J.; Fang, Y.-G.; S. Francisco, J.; Zhu, C. Q.; Chu, C. H. J. Am. Chem. Soc. 2023, 145, 10839.
[6]
(b) Yuan, S. S.; Mai, Z. H.; Yang, Z.; Jin, P. R.; Zhang, G.; Zhu, J. Y.; Matsuyama, H.; Van der Bruggen, B. J. Membr. Sci. 2023, 675, 121482.
[6]
(c) Jin, P. R.; Yuan, S. S.; Zhang, G.; Zhu, J. Y.; Zheng, J. F.; Luis, P.; Van der Bruggen, B. J. Membr. Sci. 2020, 608, 118241.
[6]
(d) Zheng, Y. T.; Zhang, T. T.; Wang, P. Y.; Wu, Z. B.; Zhou, L.; Ye, Y. Q.; Zhou, X.; He, M.; Yang, S. Chin. Chem. Lett. 2017, 28, 253.
[6]
(e) Gómez, J. E.; Guo, W.; Kleij, A. W. Org. Lett. 2016, 18, 6042.
[6]
(f) Llauger, L.; He, H.; Kim, J.; Aguirre, J.; Rosen, N.; Peters, U.; Davies, P.; Chiosis, G. J. Med. Chem. 2005, 48, 2892.
[6]
(g) Sun, Z.-Y.; Botros, E.; Su, A.-D.; Kim, Y.; Wang, E.; Baturay, N. Z.; Kwon, C.-H. J. Med. Chem. 2000, 43, 4160.
[7]
(a) Zhou, Y. M.; Huang, Y. ACS Sustainable Chem. Eng. 2022, 10, 15344.
[7]
(b) Wu, W. Q.; Chen, Y.; Li, M.; Hu, W. G.; Lin, X. M. J. Org. Chem. 2019, 84, 14529.
[7]
(c) Klaus, V.; Clark, J. S. Synlett 2017, 28, 1358.
[7]
(d) McGarrigle, E. M.; Myers, E. L.; Illa, O.; Shaw, M. A.; Riches, S. L.; Aggarwal, V. K. Chem. Rev. 2007, 107, 5841.
[8]
(a) Xiong, M. F.; Liu, G. F.; Ye, B. H. Inorg. Chem. 2023, 62, 11654.
[8]
(b) Xu, Y. N.; Liu, Y.; Zhang, Y.; Yang, K. F.; Wang, Y.; Peng, J. J.; Shao, X. X.; Bai, Y. J. Org. Chem. 2023, 88, 277.
[8]
(c) Gavrilov, K. N.; Chuchelkin, I. V.; Gavrilov, V. K.; Zheglov, S. V.; Firsin, I. D.; Trunina, V. M.; Borisova, N. E.; Bityak, Y. P.; Maloshitskaya, O. A.; Tafeenko, V. A.; Zimarev, V. S.; Goulioukina, N. S. Organometallics 2023, 42, 1985.
[8]
(d) Afsan, Z.; Ahmad, A.; Zafar, M.; Das, A.; Roisnel, T.; Ghosh, S. Polyhedron 2022, 227, 116120.
[8]
(e) Sinha, S. K.; Panja, S.; Grover, J.; Hazra, P. S.; Pandit, S.; Bairagi, Y.; Zhang, X. L.; Maiti, D. J. Am. Chem. Soc. 2022, 144, 12032.
[8]
(f) Chuchelkin, I. V.; Gavrilov, K. N.; Gavrilov, V. K.; Zheglov, S. V.; Firsin, I. D.; Perepukhov, A. M.; Maximychev, A. V.; Borisova, N. E.; Zamilatskov, I. A.; Tyurin, V. S.; Dejoie, C.; Chernyshev, V. V.; Zimarev, V. S.; Goulioukina, N. S. Organometallics 2021, 40, 3645.
[8]
(g) Roy, D. K.; Borthakur, R.; Bhattacharyya, S.; Ramkumar, V.; Ghosh, S. J. Organomet.Chem. 2015, 799-800, 132.
[8]
(h) Lam, F. L.; Kwong, F. Y.; Chan, A. S. C. Chem. Commun. 2010, 46, 4649.
[8]
(i) Mellah, M.; Voitunriez, A.; Schulz, E. Chem. Rev. 2007, 107, 5133.
[8]
(j) Goh, L. Y.; Teo, M. E.; Khoo, S. B.; Leong, W. K.; Vittal, J. J. J. Organomet. Chem. 2002, 664, 161.
[8]
(k) Murray, S. G.; Hartley, F. R. Chem. Rev. 1981, 81, 365.
[9]
(a) Ding, T.; Jiang, L.; Yi, W. Chem. Commun. 2020, 56, 3995.
[9]
(b) Li, Y.; Wang, M.; Jiang, X. ACS Catal. 2017, 7, 7587.
[9]
(c) Liu, F.; Jiang, L.; Qiu, H.; Yi, W. Org. Lett. 2018, 20, 6270.
[9]
(d) Xiang, H.; Liu, J.; Wang, J.; Jiang, L.; Yi, W. Org. Lett. 2022, 24, 181.
[10]
(a) Beletskaya, I. P.; Ananikov, V. P. Chem. Rev. 2022, 122, 16110.
[10]
(b) Jones, A. C.; Nicholson, W. I.; Smallman, H. R.; Browne, D. L. Org. Lett. 2020, 22, 7433.
[10]
(c) Chen, L.; Fajer, A. N.; Yessimbekov, Z.; Kazemi, M.; Moham- madi, M. J. Sulfur Chem. 2019, 40, 451.
[10]
(d) Vizer, S. A.; Sycheva, E. S.; Quntar, A.; Kurmankulov, N. B.; Yerzhanov, K. B.; Dembitsky, V. M. Chem. Rev. 2015, 115, 1475.
[10]
(e) Lee, P. H.; Park, Y.; Park, S.; Lee, E.; Kim, S. J. Org. Chem. 2011, 76, 760.
[10]
(f) Zhang, Y.; Ngeow, K. C.; Ying, J. Y. Org. Lett. 2007, 9, 3495.
[10]
(g) Mispelaere-Canivet, C.; Spindler, J.; Perrioa, S.; Beslin, P. Tetrahedron 2005, 61, 5253.
[10]
(h) Taniguchi, N.; Onami, T. J. Org. Chem. 2004, 69, 915.
[10]
(i) Reddy, T. I.; Varma, R. S. Chem. Commun. 1997, 28, 621.
[11]
(a) Tsuzaki, M.; Ando, S.; Ishizuka, T. Chem. Pharm. Bull. 2023, 71, 620.
[11]
(b) Liu, Z. L.; Xu, J. X.; Deng, N.; Dong, Z.; Shen, X.; Xu, J.; Xu, H. J. Curr. Org. Synth. 2022, 19, 824.
[11]
(c) Rozhkov, V. V.; Kolotylo, M. V.; Onys'ko, P. P.; Lukin, O. Tetrahedron Lett. 2016, 57, 308.
[11]
(d) Badsara, S. S.; Chan, C. C.; Lee, C. F. Asian J. Org.Chem. 2014, 3, 1197.
[12]
(a) Nguyen, K. N.; Duus, F.; Luu, T. X. T. J. Sulf. Chem. 2016, 37, 349.
[12]
(b) Duan, Z.; Ranjit, S.; Liu, X. Org. Lett. 2010, 12, 2430.
[12]
(c) Azizi, N.; Amiri, A. K.; Bolourtchian, M.; Saidi, M. R. J. Iran. Chem. Soc. 2009, 6, 749.
[12]
(d) Sreedhar, B.; Reddy, P. S.; Reddy, M. A. Synthesis 2009, 10, 1732.
[12]
(e) Trankle, W. G.; Kopach, M. E. Org. Process Res. Dev. 2007, 11, 913.
[12]
(f) Varala, R.; Ramu, E.; Alam, M. M.; Adapa, S. R. Chem. Lett. 2004, 33, 1614.
[12]
(g) Cherng, Y. J. Tetrahedron 2002, 58, 4931.
[13]
(a) Monfared, A.; Ahmadi, S.; Rahmani, Z.; Nezhad, P. D. K.; Hosseinian, A. J. Sulf. Chem. 2019, 40, 209.
[13]
(b) Tomashenko, O. A.; Grushin, V. V. Chem. Rev. 2011, 111, 4475.
[13]
(c) Gawronski, J.; Wascinska, N.; Gajewy, J. Chem. Rev. 2008, 108, 5227.
[13]
(d) Chult, C.; Corriu, R. J. P.; Reye, C.; Young, J. C. Chem. Rev. 1993, 93, 1371.
[14]
(a) Oechsner, R. M.; Lindenmaier, I. H.; Fleischer, I. Org. Lett. 2023, 25, 1655.
[14]
(b) Ang, N. W. J.; Ackermann, L. Chem.-Eur. J. 2021, 27, 4883.
[14]
(c) Panova, Y. S.; Kashin, A. S.; Vorobev, M. G.; Degtyareva, E. S.; Ananikov, V. P. ACS Catal. 2016, 6, 3637.
[14]
(d) Rostami, A.; Rostami, A.; Ghaderi, A. J. Org. Chem. 2015, 80, 8694.
[14]
(e) Gholinejad, M. Eur. J. Org. Chem. 2015, 2015, 4162.
[14]
(f) Xing, W. L.; Liu, D. G.; Fu, M. C. RSC Adv. 2021, 11, 4593.
[14]
(g) Guo, Y.; Quan, Z. J.; Da, Y. X.; Zhang, Z.; Wang, X. C. RSC Adv. 2015, 5, 45479.
[14]
(h) Du, B.; Jin, B.; Sun, P. Org. Lett. 2014, 16, 3032.
[14]
(i) Platon, M.; Wijaya, N.; Rampazzi, V.; Cui, L.; Rousselin, Y.; Saeys, M.; Hierso, J.-C. Chem.-Eur. J. 2014, 20, 12584.
[14]
(j) Gogoia, P.; Hazarikaa, S.; Sarmab, M. J.; Sarmaa, K.; Barman, P. Tetrahedron 2014, 70, 7484.
[14]
(k) Corma, A.; Navas, J.; Rodenas, T.; Sabater, M. J. Chem.-Eur. J. 2013, 19, 17464.
[14]
(l) Hu, B. L.; Hu, H. N.; Sun, L. L.; Tang, R. Y. Chin. J. Chem. 2012, 30, 2556.
[14]
(m) O’Mahony, G. E.; Ford, A.; Maguire, A. R. J. Org. Chem. 2012, 77, 3288.
[14]
(n) Lan, M. T.; Wu, W. Y.; Huang, S. H.; Luo, K. L.; Tsai, F.-Y. RSC Adv. 2011, 1, 1751.
[14]
(o) Sakai, N.; Moritaka, K.; Konakahara, T. Eur. J. Org. Chem. 2009, 4123.
[14]
(p) Jiang, Z.; She, J.; Lin, X. Adv. Synth. Catal. 2009, 351, 2558.
[15]
(a) Liu, H. C.; Liu, J. P.; Cheng, X. K.; Jia, X. J.; Yu, L.; Xu, Q. ChemSusChem 2019, 12, 2994.
[15]
(b) Wang, W. M.; Liu, L. J.; Yao, L.; Meng, F. J.; Sun, Y. M.; Zhao, C. Q.; Xu, Q.; Han, L. B. J. Org. Chem. 2016, 81, 6843.
[15]
(c) Zhu, Y. Y.; Chen, T. Q.; Li, S.; Shimada, S.; Han, L. B. J. Am. Chem. Soc. 2016, 138, 5825.
[15]
(d) Chen, H.; Dai, W.; Chen, Y.; Xu, Q.; Chen, J.; Yu, L.; Zhao, Y.; Ye, M.; Pan, Y. Green Chem. 2014, 16, 2136.
[15]
(e) Yu, L.; Wu, Y.; Cao, H.; Zhang, X.; Shi, X.; Luan, J.; Chen, T.; Pan, Y.; Xu, Q. Green Chem. 2014, 16, 287.
[15]
(f) Yu, L.; Wu, Y.; Chen, T.; Pan, Y.; Xu, Q. Org. Lett. 2013, 15, 144.
[15]
(g) Wang, G.; Shen, R. W.; Xu, Q.; Goto, M.; Zhao, Y. F.; Han, L. B. J. Org. Chem. 2010, 75, 3890.
[15]
(h) Zhou, Y. B.; Wang, G.; Saga, Y.; Shen, R. W.; Goto, M.; Zhao, Y. F.; Han, L. B. J. Org. Chem. 2010, 75, 924.
[16]
(a) Ma, X. T.; Zhu, Y. Y.; Yu, J.; Yan, R.; Xie, X. N.; Huang, L. J.; Wang, Q.; Chang, X. P.; Xu, Q. Org. Chem. Front. 2022, 9, 3204.
[16]
(b) Wang, Q.; Zhu, B.; Yang, G.; Ma, X.; Xu, Q. Chin. J. Org. Chem. 2021, 41, 1193 (in Chinese).
[16]
( 王琦, 朱柏燃, 杨光, 马献涛, 徐清, 有机化学, 2021, 41, 1193.)
[16]
(c) Ma, X. T.; Yu, J.; Yan, R.; Yan, M. L.; Xu, Q. J. Org. Chem. 2019, 84, 11294.
[16]
(d) Yang, Y. Q.; Ye, Z. H.; Zhang, X.; Zhou, Y. P.; Ma, X. T.; Cao, H. E.; Li, H.; Yu, L.; Xu, Q. Org. Biomol. Chem. 2017, 15, 9638.
[16]
(e) Ma, X. T.; Yu, L.; Su, C. L.; Yang, Y. Q.; Li, H.; Xu, Q. Adv. Synth. Catal. 2017, 359, 1649.
[16]
(f) Ma, X. T.; Liu, Q.; Jia, X. J.; Su, C. L.; Xu, Q. RSC Adv. 2016, 6, 56930.
[16]
(g) Jia, X. J.; Yu, L.; Liu, J. P.; Xu, Q.; Sickert, M.; Chen, L. H.; Lautens, M. Green Chem. 2014, 16, 3444.
[16]
(h) Yu, X. C.; Li, B.; Yu, B. H.; Xu, Q. Chin. Chem. Lett. 2013, 24, 605.
[16]
(i) Liu, C. Z.; Zang, X. F.; Yu, B. H.; Yu, X. C.; Xu, Q. Synlett 2011, 8, 1143.
文章导航

/