卤化钠促进硫-硅键活化及其在非对称硫醚合成中的应用
收稿日期: 2023-10-31
修回日期: 2023-12-11
网络出版日期: 2024-01-12
基金资助
浙江省领军创新创业团队引进计划(2022R01021); 国家自然科学基金(21672163)
Sodium Halides-Promoted S—Si Bond Activation and Its Application in the Synthesis of Unsymmetrical Thioethers
Received date: 2023-10-31
Revised date: 2023-12-11
Online published: 2024-01-12
Supported by
Leading Innovative and Entrepreneur Team Introduction Program of Zhejiang(2022R01021); National Natural Science Foundation of China(21672163)
梁家仪 , 杨雅淇 , 刘建平 , 徐清 , 韩立彪 . 卤化钠促进硫-硅键活化及其在非对称硫醚合成中的应用[J]. 有机化学, 2024 , 44(5) : 1658 -1666 . DOI: 10.6023/cjoc202310035
Unlike the conventional methods that require the use of fluoride salts for activation of the E—Si bonds of organosilicon compounds by forming the strong Si—F bond, simple inorganic salt NaBr even the table salt NaCl could be used to effectively activate the S—Si bond through formation of the relatively weaker Si—X (X=Br, Cl) bonds. Employing this method, inorganic sodium halides can be used to promote the reaction of thiosilanes with non-fluorine alkyl halides, producing unsymmetrical alkyl thioethers under base-free neutral conditions. The reaction produced silyl halides TMSX as byproduct, which could be recovered. This method could also be extended to non-fluorine heteroaryl halides and electron-deficient aryl halides for the synthesis of heteroaryl and electron-deficient aryl thioethers, revealing the relatively broad substrate scope of the method.
| [1] | (a) Derieux, C.; Léauté, A.; Brugoux, A.; Jaccaz, D.; Terrier, C.; Pin, J.-P.; Kniazeff, J.; Merrer, J. L.; Becker, J. A. J. Neuropsychopharmacology 2022, 47, 1680. |
| [1] | (b) Ahdenov, R.; Mohammadi, A. A.; Makarem, S.; Taheri, S.; Mollabagher, H. Heterocycl. Commun. 2022, 28, 67. |
| [1] | (c) Elinson, M. N.; Ryzhkova, Y. E.; Vereshchagin, A. N.; Ryzhkov, F. V.; Egorov, M. P. J. Heterocycl. Chem. 2021, 58, 1484. |
| [1] | (d) Elinson, M. N.; Vereshchagin, A. N.; Korshunov, A. D.; Zaimovskaya, T. A.; Egorov, M. P. Monatsh. Chem. 2018, 149, 1069. |
| [1] | (e) Jia, H. L.; Li, Q.; Bayaguud, A.; She, S.; Huang, Y. C.; Chen, K.; Wei, Y. G. Sci. Rep. 2017, 7, 12523. |
| [1] | (f) Kása, P.; Toldi, J.; Farkas, Z.; Joó, F.; Wolff, J. R. Neurochem. Int. 1987, 11, 443. |
| [2] | (a) Liu, L. Y.; Fan, W.; Li, S. H. ACS Catal. 2023, 13, 2396. |
| [2] | (b) Ono, Y.; Takeuchi, M.; Zhou, Y.; Isogai, A. Cellulose 2021, 28, 6035. |
| [2] | (c) Wang, H. M.; Wang, X. Y.; Sun, T. T.; Li, P. X.; Chu, X. M.; Xing, X. T.; Liu, S. J.; Tang, E. J. Cellulose 2021, 28, 11315. |
| [2] | (d) P??kk?nen, T.; P?nni, R.; Dou, J.; Nuopponenand, M.; Vuorinen, T. Carbohydr. Polym. 2017, 174, 524. |
| [2] | (e) Shi, H. W.; Yu, C.; Yan, J. Chin. Chem. Lett. 2015, 26, 1117. |
| [2] | (f) Liu, J. X.; Ma, S. M. Tetrahedron 2013, 69, 10161. |
| [2] | (g) Ma, S. M.; Liu, J. X.; Li, S. H.; Chen, B.; Cheng, J. J.; Kuang, J. Q.; Liu, Y.; Wan, B. Q.; Wang, Y. L.; Ye, J. T.; Yu, Q.; Yuan, W. M.; Yub, S. C. Adv. Synth. Catal. 2011, 353, 1005. |
| [2] | (h) Nagano, T.; Jia, Z. H.; Li, X. S.; Yan, M.; Lu, G.; Chan, A. S. C.; Hayashi, T. Chem. Lett. 2010, 39, 929. |
| [2] | (i) Bennett, S. M.; Tang, Y.; McMaster, D.; Bright, F. V.; Detty, M. R. J. Org. Chem. 2008, 73, 6849. |
| [3] | (a) Hu, H.; Luo, C.; Wang, B. S.; Lai, T.; Zhang, G. R.; Gao, G. H. Mol. Catal. 2023, 538, 113010. |
| [3] | (b) Duda, M. L.; Velidandi, A. Results Chem. 2023, 5, 100697. |
| [3] | (c) Semwal, R.; Ravi, C.; Kumar, R.; Meena, R.; Adimurthy, S. J. Org. Chem. 2019, 84, 792. |
| [3] | (d) Reddy, V. L.; Prathima, P. S.; Rao, V. J.; Bikshapathi, R. New J. Chem. 2018, 42, 20152. |
| [3] | (e) Li, L. J.; Xue, M. Y.; Yan, X.; Liu, W. M.; Xu, K.; Zhang, S. Org. Biomol. Chem. 2018, 16, 4615. |
| [3] | (f) Ghorbani-Choghamarani, A.; Zeinivand, J. Chin. Chem. Lett. 2010, 21, 1083. |
| [4] | (a) Qian, C. W.; Wang, Y.; Li, X.; Yao, C. S. ChemistrySelect 2023, 8, e202203332. |
| [4] | (b) Glorius, F.; Ernst, J.; Rakers, L. Synthesis 2017, 49, 260. |
| [4] | (c) Dandia, A.; Khan, S.; Sharma, R.; Parihar, S.; Parewa, V. ChemistrySelect 2017, 2, 9684. |
| [4] | (d) Liu, C. K.; Fang, Z.; Yang, Z.; Li, Q. W.; Guo, S. Y.; Zhang, K.; Ouyang, P. K.; Guo, K. Tetrahedron Lett. 2015, 56, 5973. |
| [4] | (e) Alizadeh, A.; Moafi, L. J. Chem. Res. 2015, 39, 464. |
| [4] | (f) Dandia, A.; Jain, A. K.; Bhati, D. S. Synth. Commun. 2011, 41, 2905. |
| [5] | (a) Brahmachari, G.; Bhowmick, A.; Karmakar, I. J. Org. Chem. 2021, 86, 9658. |
| [5] | (b) Li, X. X.; Wang, Y. X.; Ouyang, Y. X.; Yu, Z. Y.; Zhang, B. B.; Zhang, J. R.; Shi, H. F.; Zuilhof, H.; Du, Y. F. J. Org. Chem. 2021, 86, 9490. |
| [5] | (c) Korkmaz, E.; Zora, M. J. Org. Chem. 2020, 85, 4937. |
| [5] | (d) Liu, X.; Dong, Z. B. J. Org. Chem. 2019, 84, 11524. |
| [5] | (e) Prasanjit Ghosh, P.; Nandi, A. K.; Chhetri, G.; Das, S. J. Org. Chem. 2018, 83, 12411. |
| [5] | (f) Dong, Z. B.; Balkenhohl, M.; Tan, E.; Knochel, P. Org. Lett. 2018, 20, 7581. |
| [5] | (g) Gandeepan, P.; Koeller, J.; Ackermann, L. ACS Catal. 2017, 7, 1030. |
| [5] | (h) Miller, L. M.; Keune, W.-J.; Castagna, D.; Young, L. C.; Duffy, E. L.; Potjewyd, F.; Salgado-Polo, F.; Engel García, P.; Semaan, D.; Pritchard, J. M.; Perrakis, A.; Macdonald, S. J. F.; Jamieson, C.; Watson, A. J. B. J. Med. Chem. 2017, 60, 722. |
| [5] | (i) Moritz, B.; Stracke, J. O. Electrophoresis 2017, 38, 769. |
| [5] | (j) Kleingardner, J. G.; Bren, K. L. Acc. Chem. Res. 2015, 48, 1845. |
| [5] | (k) Lowe, A. B. Polym. Chem. 2010, 1, 17. |
| [5] | (l) Liu, J.; Yang, J.; Yang, Q.; Wang, G.; Li, Y. Adv. Funct. Mater. 2005, 15, 1297. |
| [5] | (m) McReynolds, M.; Dougherty, D. J. M.; Hanson, P. R. Chem. Rev. 2004, 104, 2239. |
| [5] | (n) Liu, L.; Stelmach, J. E.; Natarajan, S. R.; Chen, M. H.; Singh, S. B.; Schwartz, C. D.; Fitzgerald, C. E.; O’Keefe, S. J.; Zaller, D. M.; Schmatz, D. M.; Doherty, J. B. Bioorg. Med. Chem. Lett. 2003, 13, 3979. |
| [5] | (o) Largeron, M.; Neudorffer, A.; Gramond, J. P.; Fleury, M. B. Ann. Pharm. Fr. 2003, 61, 164. |
| [5] | (p) Liu, G.; Huth, J. R.; Olejniczak, E. T.; Mendoza, R.; DeVries, P.; Leitza, S.; Reilly, E. B.; Okasinski, G. F.; Fesik, S. W.; von Geldern, T. W. J. Med. Chem. 2001, 44, 1202. |
| [6] | (a) Rao, Z. P.; Li, X. J.; Fang, Y.-G.; S. Francisco, J.; Zhu, C. Q.; Chu, C. H. J. Am. Chem. Soc. 2023, 145, 10839. |
| [6] | (b) Yuan, S. S.; Mai, Z. H.; Yang, Z.; Jin, P. R.; Zhang, G.; Zhu, J. Y.; Matsuyama, H.; Van der Bruggen, B. J. Membr. Sci. 2023, 675, 121482. |
| [6] | (c) Jin, P. R.; Yuan, S. S.; Zhang, G.; Zhu, J. Y.; Zheng, J. F.; Luis, P.; Van der Bruggen, B. J. Membr. Sci. 2020, 608, 118241. |
| [6] | (d) Zheng, Y. T.; Zhang, T. T.; Wang, P. Y.; Wu, Z. B.; Zhou, L.; Ye, Y. Q.; Zhou, X.; He, M.; Yang, S. Chin. Chem. Lett. 2017, 28, 253. |
| [6] | (e) Gómez, J. E.; Guo, W.; Kleij, A. W. Org. Lett. 2016, 18, 6042. |
| [6] | (f) Llauger, L.; He, H.; Kim, J.; Aguirre, J.; Rosen, N.; Peters, U.; Davies, P.; Chiosis, G. J. Med. Chem. 2005, 48, 2892. |
| [6] | (g) Sun, Z.-Y.; Botros, E.; Su, A.-D.; Kim, Y.; Wang, E.; Baturay, N. Z.; Kwon, C.-H. J. Med. Chem. 2000, 43, 4160. |
| [7] | (a) Zhou, Y. M.; Huang, Y. ACS Sustainable Chem. Eng. 2022, 10, 15344. |
| [7] | (b) Wu, W. Q.; Chen, Y.; Li, M.; Hu, W. G.; Lin, X. M. J. Org. Chem. 2019, 84, 14529. |
| [7] | (c) Klaus, V.; Clark, J. S. Synlett 2017, 28, 1358. |
| [7] | (d) McGarrigle, E. M.; Myers, E. L.; Illa, O.; Shaw, M. A.; Riches, S. L.; Aggarwal, V. K. Chem. Rev. 2007, 107, 5841. |
| [8] | (a) Xiong, M. F.; Liu, G. F.; Ye, B. H. Inorg. Chem. 2023, 62, 11654. |
| [8] | (b) Xu, Y. N.; Liu, Y.; Zhang, Y.; Yang, K. F.; Wang, Y.; Peng, J. J.; Shao, X. X.; Bai, Y. J. Org. Chem. 2023, 88, 277. |
| [8] | (c) Gavrilov, K. N.; Chuchelkin, I. V.; Gavrilov, V. K.; Zheglov, S. V.; Firsin, I. D.; Trunina, V. M.; Borisova, N. E.; Bityak, Y. P.; Maloshitskaya, O. A.; Tafeenko, V. A.; Zimarev, V. S.; Goulioukina, N. S. Organometallics 2023, 42, 1985. |
| [8] | (d) Afsan, Z.; Ahmad, A.; Zafar, M.; Das, A.; Roisnel, T.; Ghosh, S. Polyhedron 2022, 227, 116120. |
| [8] | (e) Sinha, S. K.; Panja, S.; Grover, J.; Hazra, P. S.; Pandit, S.; Bairagi, Y.; Zhang, X. L.; Maiti, D. J. Am. Chem. Soc. 2022, 144, 12032. |
| [8] | (f) Chuchelkin, I. V.; Gavrilov, K. N.; Gavrilov, V. K.; Zheglov, S. V.; Firsin, I. D.; Perepukhov, A. M.; Maximychev, A. V.; Borisova, N. E.; Zamilatskov, I. A.; Tyurin, V. S.; Dejoie, C.; Chernyshev, V. V.; Zimarev, V. S.; Goulioukina, N. S. Organometallics 2021, 40, 3645. |
| [8] | (g) Roy, D. K.; Borthakur, R.; Bhattacharyya, S.; Ramkumar, V.; Ghosh, S. J. Organomet.Chem. 2015, 799-800, 132. |
| [8] | (h) Lam, F. L.; Kwong, F. Y.; Chan, A. S. C. Chem. Commun. 2010, 46, 4649. |
| [8] | (i) Mellah, M.; Voitunriez, A.; Schulz, E. Chem. Rev. 2007, 107, 5133. |
| [8] | (j) Goh, L. Y.; Teo, M. E.; Khoo, S. B.; Leong, W. K.; Vittal, J. J. J. Organomet. Chem. 2002, 664, 161. |
| [8] | (k) Murray, S. G.; Hartley, F. R. Chem. Rev. 1981, 81, 365. |
| [9] | (a) Ding, T.; Jiang, L.; Yi, W. Chem. Commun. 2020, 56, 3995. |
| [9] | (b) Li, Y.; Wang, M.; Jiang, X. ACS Catal. 2017, 7, 7587. |
| [9] | (c) Liu, F.; Jiang, L.; Qiu, H.; Yi, W. Org. Lett. 2018, 20, 6270. |
| [9] | (d) Xiang, H.; Liu, J.; Wang, J.; Jiang, L.; Yi, W. Org. Lett. 2022, 24, 181. |
| [10] | (a) Beletskaya, I. P.; Ananikov, V. P. Chem. Rev. 2022, 122, 16110. |
| [10] | (b) Jones, A. C.; Nicholson, W. I.; Smallman, H. R.; Browne, D. L. Org. Lett. 2020, 22, 7433. |
| [10] | (c) Chen, L.; Fajer, A. N.; Yessimbekov, Z.; Kazemi, M.; Moham- madi, M. J. Sulfur Chem. 2019, 40, 451. |
| [10] | (d) Vizer, S. A.; Sycheva, E. S.; Quntar, A.; Kurmankulov, N. B.; Yerzhanov, K. B.; Dembitsky, V. M. Chem. Rev. 2015, 115, 1475. |
| [10] | (e) Lee, P. H.; Park, Y.; Park, S.; Lee, E.; Kim, S. J. Org. Chem. 2011, 76, 760. |
| [10] | (f) Zhang, Y.; Ngeow, K. C.; Ying, J. Y. Org. Lett. 2007, 9, 3495. |
| [10] | (g) Mispelaere-Canivet, C.; Spindler, J.; Perrioa, S.; Beslin, P. Tetrahedron 2005, 61, 5253. |
| [10] | (h) Taniguchi, N.; Onami, T. J. Org. Chem. 2004, 69, 915. |
| [10] | (i) Reddy, T. I.; Varma, R. S. Chem. Commun. 1997, 28, 621. |
| [11] | (a) Tsuzaki, M.; Ando, S.; Ishizuka, T. Chem. Pharm. Bull. 2023, 71, 620. |
| [11] | (b) Liu, Z. L.; Xu, J. X.; Deng, N.; Dong, Z.; Shen, X.; Xu, J.; Xu, H. J. Curr. Org. Synth. 2022, 19, 824. |
| [11] | (c) Rozhkov, V. V.; Kolotylo, M. V.; Onys'ko, P. P.; Lukin, O. Tetrahedron Lett. 2016, 57, 308. |
| [11] | (d) Badsara, S. S.; Chan, C. C.; Lee, C. F. Asian J. Org.Chem. 2014, 3, 1197. |
| [12] | (a) Nguyen, K. N.; Duus, F.; Luu, T. X. T. J. Sulf. Chem. 2016, 37, 349. |
| [12] | (b) Duan, Z.; Ranjit, S.; Liu, X. Org. Lett. 2010, 12, 2430. |
| [12] | (c) Azizi, N.; Amiri, A. K.; Bolourtchian, M.; Saidi, M. R. J. Iran. Chem. Soc. 2009, 6, 749. |
| [12] | (d) Sreedhar, B.; Reddy, P. S.; Reddy, M. A. Synthesis 2009, 10, 1732. |
| [12] | (e) Trankle, W. G.; Kopach, M. E. Org. Process Res. Dev. 2007, 11, 913. |
| [12] | (f) Varala, R.; Ramu, E.; Alam, M. M.; Adapa, S. R. Chem. Lett. 2004, 33, 1614. |
| [12] | (g) Cherng, Y. J. Tetrahedron 2002, 58, 4931. |
| [13] | (a) Monfared, A.; Ahmadi, S.; Rahmani, Z.; Nezhad, P. D. K.; Hosseinian, A. J. Sulf. Chem. 2019, 40, 209. |
| [13] | (b) Tomashenko, O. A.; Grushin, V. V. Chem. Rev. 2011, 111, 4475. |
| [13] | (c) Gawronski, J.; Wascinska, N.; Gajewy, J. Chem. Rev. 2008, 108, 5227. |
| [13] | (d) Chult, C.; Corriu, R. J. P.; Reye, C.; Young, J. C. Chem. Rev. 1993, 93, 1371. |
| [14] | (a) Oechsner, R. M.; Lindenmaier, I. H.; Fleischer, I. Org. Lett. 2023, 25, 1655. |
| [14] | (b) Ang, N. W. J.; Ackermann, L. Chem.-Eur. J. 2021, 27, 4883. |
| [14] | (c) Panova, Y. S.; Kashin, A. S.; Vorobev, M. G.; Degtyareva, E. S.; Ananikov, V. P. ACS Catal. 2016, 6, 3637. |
| [14] | (d) Rostami, A.; Rostami, A.; Ghaderi, A. J. Org. Chem. 2015, 80, 8694. |
| [14] | (e) Gholinejad, M. Eur. J. Org. Chem. 2015, 2015, 4162. |
| [14] | (f) Xing, W. L.; Liu, D. G.; Fu, M. C. RSC Adv. 2021, 11, 4593. |
| [14] | (g) Guo, Y.; Quan, Z. J.; Da, Y. X.; Zhang, Z.; Wang, X. C. RSC Adv. 2015, 5, 45479. |
| [14] | (h) Du, B.; Jin, B.; Sun, P. Org. Lett. 2014, 16, 3032. |
| [14] | (i) Platon, M.; Wijaya, N.; Rampazzi, V.; Cui, L.; Rousselin, Y.; Saeys, M.; Hierso, J.-C. Chem.-Eur. J. 2014, 20, 12584. |
| [14] | (j) Gogoia, P.; Hazarikaa, S.; Sarmab, M. J.; Sarmaa, K.; Barman, P. Tetrahedron 2014, 70, 7484. |
| [14] | (k) Corma, A.; Navas, J.; Rodenas, T.; Sabater, M. J. Chem.-Eur. J. 2013, 19, 17464. |
| [14] | (l) Hu, B. L.; Hu, H. N.; Sun, L. L.; Tang, R. Y. Chin. J. Chem. 2012, 30, 2556. |
| [14] | (m) O’Mahony, G. E.; Ford, A.; Maguire, A. R. J. Org. Chem. 2012, 77, 3288. |
| [14] | (n) Lan, M. T.; Wu, W. Y.; Huang, S. H.; Luo, K. L.; Tsai, F.-Y. RSC Adv. 2011, 1, 1751. |
| [14] | (o) Sakai, N.; Moritaka, K.; Konakahara, T. Eur. J. Org. Chem. 2009, 4123. |
| [14] | (p) Jiang, Z.; She, J.; Lin, X. Adv. Synth. Catal. 2009, 351, 2558. |
| [15] | (a) Liu, H. C.; Liu, J. P.; Cheng, X. K.; Jia, X. J.; Yu, L.; Xu, Q. ChemSusChem 2019, 12, 2994. |
| [15] | (b) Wang, W. M.; Liu, L. J.; Yao, L.; Meng, F. J.; Sun, Y. M.; Zhao, C. Q.; Xu, Q.; Han, L. B. J. Org. Chem. 2016, 81, 6843. |
| [15] | (c) Zhu, Y. Y.; Chen, T. Q.; Li, S.; Shimada, S.; Han, L. B. J. Am. Chem. Soc. 2016, 138, 5825. |
| [15] | (d) Chen, H.; Dai, W.; Chen, Y.; Xu, Q.; Chen, J.; Yu, L.; Zhao, Y.; Ye, M.; Pan, Y. Green Chem. 2014, 16, 2136. |
| [15] | (e) Yu, L.; Wu, Y.; Cao, H.; Zhang, X.; Shi, X.; Luan, J.; Chen, T.; Pan, Y.; Xu, Q. Green Chem. 2014, 16, 287. |
| [15] | (f) Yu, L.; Wu, Y.; Chen, T.; Pan, Y.; Xu, Q. Org. Lett. 2013, 15, 144. |
| [15] | (g) Wang, G.; Shen, R. W.; Xu, Q.; Goto, M.; Zhao, Y. F.; Han, L. B. J. Org. Chem. 2010, 75, 3890. |
| [15] | (h) Zhou, Y. B.; Wang, G.; Saga, Y.; Shen, R. W.; Goto, M.; Zhao, Y. F.; Han, L. B. J. Org. Chem. 2010, 75, 924. |
| [16] | (a) Ma, X. T.; Zhu, Y. Y.; Yu, J.; Yan, R.; Xie, X. N.; Huang, L. J.; Wang, Q.; Chang, X. P.; Xu, Q. Org. Chem. Front. 2022, 9, 3204. |
| [16] | (b) Wang, Q.; Zhu, B.; Yang, G.; Ma, X.; Xu, Q. Chin. J. Org. Chem. 2021, 41, 1193 (in Chinese). |
| [16] | ( 王琦, 朱柏燃, 杨光, 马献涛, 徐清, 有机化学, 2021, 41, 1193.) |
| [16] | (c) Ma, X. T.; Yu, J.; Yan, R.; Yan, M. L.; Xu, Q. J. Org. Chem. 2019, 84, 11294. |
| [16] | (d) Yang, Y. Q.; Ye, Z. H.; Zhang, X.; Zhou, Y. P.; Ma, X. T.; Cao, H. E.; Li, H.; Yu, L.; Xu, Q. Org. Biomol. Chem. 2017, 15, 9638. |
| [16] | (e) Ma, X. T.; Yu, L.; Su, C. L.; Yang, Y. Q.; Li, H.; Xu, Q. Adv. Synth. Catal. 2017, 359, 1649. |
| [16] | (f) Ma, X. T.; Liu, Q.; Jia, X. J.; Su, C. L.; Xu, Q. RSC Adv. 2016, 6, 56930. |
| [16] | (g) Jia, X. J.; Yu, L.; Liu, J. P.; Xu, Q.; Sickert, M.; Chen, L. H.; Lautens, M. Green Chem. 2014, 16, 3444. |
| [16] | (h) Yu, X. C.; Li, B.; Yu, B. H.; Xu, Q. Chin. Chem. Lett. 2013, 24, 605. |
| [16] | (i) Liu, C. Z.; Zang, X. F.; Yu, B. H.; Yu, X. C.; Xu, Q. Synlett 2011, 8, 1143. |
/
| 〈 |
|
〉 |