含咔唑结构的小分子及聚合物催化二氧化碳转化研究进展
收稿日期: 2023-11-19
修回日期: 2023-12-21
网络出版日期: 2024-01-12
基金资助
国家自然科学基金(22072167); 国家自然科学基金(22001257); 苏州大学附属儿童医院青年研究基金(2021QN05); 及苏州市“科教兴卫”青年科技(KJXW2022021)
Advances in Catalytic Conversion of CO2 with Carbazole-Based Molecules and Polymers
Received date: 2023-11-19
Revised date: 2023-12-21
Online published: 2024-01-12
Supported by
National Natural Science Foundation of China(22072167); National Natural Science Foundation of China(22001257); Youth Research Funding of Children’s Hospital of Soochow University(2021QN05); Kejiaowenwei Youth Science and Technology Program of Suzhou City(KJXW2022021)
咔唑具有刚性平面结构和共轭π电子特征, 表现出优异的电子传输性质. 咔唑的N原子和芳环上容易进行化学修饰, 以咔唑作为骨架或连接单元, 人们方便地开发出结构多样的咔唑基配体和聚合物, 并在催化和功能材料等研究领域中得到了广泛的应用. 二氧化碳催化转化制备燃料和化学品, 可以为实现双碳目标提供重要的技术支撑. 综述了近年来咔唑基配体、咔唑基金属配合物及含咔唑结构的多相材料在催化CO2相关反应方面的研究进展. 通过介绍催化剂制备方法, 归纳总结均相催化以及多相催化反应等内容, 将为深入理解咔唑单元在催化中的重要作用, 提升咔唑基材料的催化效率提供重要的参考信息.
姜晓琳 , 王超洋 , 武利园 , 李跃辉 . 含咔唑结构的小分子及聚合物催化二氧化碳转化研究进展[J]. 有机化学, 2024 , 44(5) : 1423 -1444 . DOI: 10.6023/cjoc202311016
Carbazole moiety exhibits excellent electron transfer ability due to its rigid planar structure and large conjugate system. The N atom and aromatic ring of carbazole can be easily modified, and carbazole-based ligands and polymers have attracted significant amounts of interests in the fields of catalysis and material sciences. Important progress has been achieved in both homogeneous and heterogeneous catalysis promoted by catalysts containing carbazole as the backbone or linker. The catalytic conversion of carbon dioxide can provide an important technology support for realization of carbon neutrality goals. In this paper, the recent progresses on the use of carbazole-based ligands, carbazole-based complexes or carbazole-based heterogeneous materials in catalytic transformation of CO2 are reviewed, including the methods of catalyst preparation, the different types of reactions in homogeneous and heterogeneous catalysis. This review will provide systematic information for further understanding the important role of carbazole units in catalysis and designing more efficient carbazole-based materials.
| [1] | Zhang, L.; Han, Z.; Zhang, L.; Li, M.; Ding, K. Chin. J. Org. Chem. 2016, 36, 1824 (in Chinese). |
| [1] | ( 张琳莉, 韩召斌, 张磊, 李明星, 丁奎岭, 有机化学, 2016, 36, 1824.) |
| [2] | Zhang, L.; Zhao, Z.; Wang, T.; Gong, J. Chem. Soc. Rev. 2018, 47, 5423. |
| [3] | Zhang, X.; Zhang, G.; Song, C.; Guo, X. Front. Energy Res. 2021, 8, 622119. |
| [4] | Huang, W.; Qiu, L.; Ren, F.; He, L. Chin. J. Org. Chem. 2021, 41, 3914 (in Chinese). |
| [4] | ( 黄文斌, 邱丽琪, 任方煜, 何良年, 有机化学, 2021, 41, 3914.) |
| [5] | Peris, E.; Crabtree, R. H. Chem. Soc. Rev. 2018, 47, 1959. |
| [6] | Kleinhans, G.; Karhu, A. J.; Boddaert, H.; Tanweer, S.; Wunderlin, D.; Bezuidenhout, D. I. Chem. Rev. 2023, 123, 8781. |
| [7] | Lee, T.-Y.; Lin, Y.-J.; Chang, Y.-Z.; Huang, L.-S.; Ko, B.-T.; Huang, J.-H. Organometallics 2017, 36, 291. |
| [8] | Wucher, B.; Moser, M.; Schumacher, S. A.; Rominger, F.; Kunz, D. Angew. Chem., Int. Ed. 2009, 48, 4417. |
| [9] | Jürgens, E.; Back, O.; Mayer, J. J.; Heinze, K.; Kunz, D. Z. Naturforscher 2016, 71, 1011. |
| [10] | Jürgens, E.; Buys, K. N.; Schmidt, A.-T.; Furfari, S. K.; Cole, M. L.; Moser, M.; Rominger, F.; Kunz, D. New J. Chem. 2016, 40, 9160. |
| [11] | Watt, F. A.; Sieland, B.; Dickmann, N.; Schoch, R.; Herbst-Irmer, R.; Ott, H.; Paradies, J.; Kuckling, D.; Hohloch, S. Dalton Trans. 2021, 50, 17361. |
| [12] | Maulbetsch, T.; Jürgens, E.; Kunz, D. Chem.-Eur. J. 2020, 26, 10634. |
| [13] | Maulbetsch, T.; Kunz, D. Angew. Chem., Int. Ed. 2021, 60, 2007. |
| [14] | Jordan, R.; Kunz, D. Molecules 2021, 26, 1669. |
| [15] | Ibá?ez, S.; Peris, E. Chem.-Eur. J. 2021, 27, 9661. |
| [16] | Pinter, P.; Schü?lbauer, C. M.; Watt, F. A.; Dickmann, N.; Herbst- Irmer, R.; Morgenstern, B.; Grünwald, A.; Ullrich, T.; Zimmer, M.; Hohloch, S.; Guldi, D. M.; Munz, D. Chem. Sci. 2021, 12, 7401. |
| [17] | Westhuizen, D.; Slabber, C. A.; Fernandes, M. A.; Joubert, D. F.; Kleinhans, G.; Westhuizen, C. J.; Stander, A.; Munro, O. Q.; Bezuidenhout, D. I. A. Chem.-Eur. J. 2021, 27, 8295. |
| [18] | Huang, H. H.; Zhang, J. H.; Dai, M.; Liu, L.; Ye, Z.; Liu, J.; Zhong, D. C.; Wang, J. W.; Zhao, C.; Ke, Z. PANS 2022, 119, e2119267119. |
| [19] | Johnson, K. R. D.; Hayes, P. G. Organometallics 2009, 28, 6352. |
| [20] | Grüger, N.; Rodríguez, L.-I.; Wadepohl, H.; Gade, L. H. Inorg. Chem. 2013, 52, 2050. |
| [21] | Plundrich, G. T.; Wadepohl, H.; Clot, E.; Gade, L. H. Chem.-Eur. J. 2016, 22, 9283. |
| [22] | Ott, J. C.; Wadepohl, H.; Gade, L. H. Angew. Chem., Int. Ed. 2020, 59, 9448. |
| [23] | Merz, L. S.; Ballmann, J.; Gade, L. H. Eur. J. Inorg. Chem. 2020, 2020, 2023. |
| [24] | Ott, J. C.; Wadepohl, H.; Gade, L. H. Inorg. Chem. 2021, 60, 3927. |
| [25] | Inoue, M.; Suzuki, T.; Nakada, M. J. Am. Chem. Soc. 2003, 125, 1140. |
| [26] | Johnson, K. R. D.; Kamenz, B. L.; Hayes, P. G. Organometallics 2014, 33, 3005. |
| [27] | DeMott, J. C.; Dekarske, J. R.; McCulloch, B. J.; Ozerov, O. V. Inorg. Chem. Front. 2015, 2, 912. |
| [28] | Tian, Y.; Jürgens, E.; Kunz, D. Chem. Commun. 2018, 54, 11340. |
| [29] | Nolla-Saltiel, R.; Geer, A. M.; Lewis, W.; Blake, A. J.; Kays, D. L. Chem. Commun. 2018, 54, 1825. |
| [30] | Turunc, E.; Gumus, I.; Arslan, H. Mater. Chem. Phys. 2020, 243,122597. |
| [31] | Yu, C.-H.; Zhu, C.; Ji, X.; Hu, W.; Xie, H.; Bhuvanesh, N.; Fang, L.; Ozerov, O. V. Inorg. Chem. Front. 2020, 7, 4357. |
| [32] | Huang, Z.; Jiang, X.; Zhou, S.; Yang, P.; Du, C. X.; Li, Y. ChemSusChem 2019, 12, 3054. |
| [33] | Wang, H.; Li, Y.; Sun, Y.; Li, Y. J. Org. Chem. 2023, 88, 8835. |
| [34] | Rzayev, J.; Zhang, Z.; Durand, N.; Soule, J. F. Org. Lett. 2022, 24, 6755. |
| [35] | Huang, Z.; Tang, J.; Jiang, X.; Xie, T.; Zhang, M.; Lan, D.; Pi, S.; Tan, Z.; Yi, B.; Li, Y. Chin. Chem. Lett. 2022, 33, 4842. |
| [36] | Qi, H.; Huang, Z.; Wang, M.; Yang, P.; Du, C.-X.; Chen, S.-W.; Li, Y. J. Catal. 2018, 363, 63. |
| [37] | Li, H.; Dong, K.; Jiao, H.; Neumann, H.; Jackstell, R.; Beller, M. Nat. Chem. 2016, 8, 1159. |
| [38] | Huang, Z.; Dong, Y.; Jiang, X.; Wang, F.; Du, C.-X.; Li, Y. J. Catal. 2022, 409, 98. |
| [39] | Du, M.; Sun, Y.; Zhao, J.; Hu, H.; Sun, L.; Li, Y. Chin. Chem. Lett. 2023, 43, 108269. |
| [40] | Fan, Z.; Chen, S.; Zou, S.; Xi, C. ACS Catal. 2022, 12, 2781. |
| [41] | Ye, J.; Ju, T.; Huang, H.; Liao, L.; Yu, D. Acc. Chem. Res. 2021, 54, 2518. |
| [42] | Huang, W.; Lin, J.; Deng, F.; Zhong, H. Asian J. Org. Chem. 2022, 11, e202200220. |
| [43] | Mao, B.; Wei, J.; Shi, M. Chem. Commun. 2022, 58, 9312. |
| [44] | Müller, A. V.; Faustino, L. A.; de Oliveira, K. T.; Patrocinio, A. O. T.; Polo, A. S. ACS Catal. 2022, 13, 633. |
| [45] | Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Adachi, C. Nature 2012, 492, 234. |
| [46] | Luo, J.; Zhang, J. ACS Catal. 2016, 6, 873. |
| [47] | Shang, T.-Y.; Lu, L.-H.; Cao, Z.; Liu, Y.; He, W.-M.; Yu, B. Chem. Commun. 2019, 55, 5408. |
| [48] | Meng, Q.-Y.; Schirmer, T. E.; Berger, A. L.; Donabauer, K.; K?nig, B. J. Am. Chem. Soc. 2019, 141, 11393. |
| [49] | Fu, Q.; Bo, Z.-Y.; Ye, J.-H.; Ju, T.; Huang, H.; Liao, L.-L.; Yu, D.-G. Nat. Commun. 2019, 10, 3259. |
| [50] | Zhang, B.; Yi, Y.; Wu, Z.-Q.; Chen, C.; Xi, C. Green Chem. 2020, 22, 5961. |
| [51] | Zhou, W.-J.; Wang, Z.-H.; Liao, L.-L.; Jiang, Y.-X.; Cao, K.-G.; Ju, T.; Li, Y.; Cao, G.-M.; Yu, D.-G. Nat. Commun. 2020, 11, 3263. |
| [52] | Yi, Y.; Xi, C. Chin. J. Catal. 2022, 43, 1652. |
| [53] | Ju, T.; Fu, Q.; Ye, J.; Zhang, Z.; Liao, L.; Yan, S.; Tian, X.; Luo, S.; Li, J.; Yu, D. Angew. Chem., Int. Ed. 2018, 57, 13897. |
| [54] | Zhang, Z.; Ye, J.; Ju, T.; Liao, L.; Huang, H.; Gui, Y.; Zhou, W.; Yu, D. ACS Catal. 2020, 10, 10871. |
| [55] | Yan, S.; Liu, S.; Chen, L.; Bo, Z.; Jing, K.; Gao, T.; Yu, B.; Lan, Y.; Luo, S.; Yu, D. Chem 2021, 7, 3099. |
| [56] | Ju, T.; Zhou, Y.; Cao, K.; Fu, Q.; Ye, J.; Sun, G.; Liu, X.; Chen, L.; Liao, L.; Yu, D. Nat. Catal. 2021, 4, 304. |
| [57] | Xu, P.; Wang, S.; Xu, H.; Liu, Y.-Q.; Li, R.-B.; Liu, W.-W.; Wang, X.-Y.; Zou, M.-L.; Zhou, Y.; Guo, D.; Zhu, X. ACS Catal. 2023, 13, 2149. |
| [58] | Wang, Y.; Gao, X.-W.; Li, J.; Chao, D. Chem. Commun. 2020, 56, 12170. |
| [59] | Wang, Y.; Liu, T.; Chen, L.; Chao, D. Inorg. Chem. 2021, 60, 5590. |
| [60] | Wang, Y.; Chen, L.; Liu, T.; Chao, D. Dalton Trans. 2021, 50, 6273. |
| [61] | Liu, T.; Chen, L.; Chao, D. Dalton Trans. 2022, 51, 4052. |
| [62] | Liu, T.; Li, Y.; Fang, Y.; Fu, Y.; Chen, L.; Chao, D. Chem.-Asian J. 2022, 17, e202200846. |
| [63] | Xie, W.; Xu, J.; Md Idros, U.; Katsuhira, J.; Fuki, M.; Hayashi, M.; Yamanaka, M.; Kobori, Y.; Matsubara, R. Nat. Chem. 2023, 15, 794. |
| [64] | Liang, H.-P.; Acharjya, A.; Anito, D. A.; Vogl, S.; Wang, T.-X.; Thomas, A.; Han, B.-H. ACS Catal. 2019, 9, 3959. |
| [65] | Wang, W.; Xi, Y.; Yang, C.; Byun, J.; Cheng, J.; Wang, S.; Wang, X. ChemCatChem 2022, 14, e202101872. |
| [66] | Nakada, A.; Miyakawa, R.; Itagaki, R.; Kato, K.; Takashima, C.; Saeki, A.; Yamakata, A.; Abe, R.; Nakai, H.; Chang, H.-C. J. Mater. Chem. A 2022, 10, 19821. |
| [67] | Das, R.; Paul, R.; Parui, A.; Shrotri, A.; Atzori, C.; Lomachenko, K. A.; Singh, A. K.; Mondal, J.; Peter, S. C. J. Am. Chem. Soc. 2023, 145, 422. |
| [68] | Lei, K.; Wang, D.; Ye, L.; Kou, M.; Deng, Y.; Ma, Z.; Wang, L.; Kong, Y. ChemSusChem 2020, 13, 1725. |
| [69] | Ye, W.; Wang, Y.; Ji, G.; Zhang, F.; Zhao, Y.; Liu, Z. ChemSusChem 2022, 15, e202200759. |
| [70] | Hong, X.; Fang, Y.; Chao, D. Mol. Catal. 2023, 549, 113476. |
| [71] | Hu, X.-M.; Salmi, Z.; Lillethorup, M.; Pedersen, E. B.; Robert, M.; Pedersen, S. U.; Skrydstrup, T.; Daasbjerg, K. Chem. Commun. 2016, 52, 5864. |
| [72] | Ren, Y.; Chang, R.; Hu, X.; Guo, J.; Hao, G.; Lu, A. Chin. Chem. Lett. 2023, 34, 108634. |
| [73] | Chen, X.; Liu, W.; Sun, Y.; Tan, T.; Du, C.-X.; Li, Y. Small Methods 2023, 7, 2201311. |
| [74] | Yoshida, S.; Sampei, M.; Todoroki, N.; Hisamura, E.; Nakao, K.; Albrecht, K.; Wadayama, T. Chem. Commun. 2023, 59, 3459. |
| [75] | Xue, H.; Zhu, H.; Huang, J.; Liao, P.; Chen, X. Chin. Chem. Lett. 2023, 34, 107134. |
| [76] | Boro, B.; Kalita, P.; Vijayaprabhakaran, A.; Dao, D. Q.; Nandy, S.; Chae, K. H.; Nailwal, Y.; Kathiresan, M.; Mondal, J. ACS Appl. Nano Mater. 2023, 6, 11788. |
| [77] | Wang, T.; Han, B. Chin. Sci. Bull. 2020, 65, 3389 (in Chinese). |
| [77] | ( 王天雄, 韩宝航, 科学通报, 2020, 65, 3389.) |
| [78] | Molla, R. A.; Bhanja, P.; Ghosh, K.; Islam, S. S.; Bhaumik, A.; Islam, S. M. ChemCatChem 2017, 9, 1939. |
| [79] | Ghosh, S.; Ghosh, A.; Riyajuddin, S.; Sarkar, S.; Chowdhury, A. H.; Ghosh, K.; Islam, S. M. ChemCatChem 2020, 12, 1055. |
| [80] | Yu, W.; Gu, S.; Fu, Y.; Xiong, S.; Pan, C.; Liu, Y.; Yu, G. J. Catal. 2018, 362, 1. |
/
| 〈 |
|
〉 |