基于氘代二甲基亚砜(DMSO-d6)实现吲哚C(2)位选择性甲硫基化与三氘甲硫基化反应
收稿日期: 2023-10-26
修回日期: 2023-12-24
网络出版日期: 2024-01-18
基金资助
太原理工大学省部共建煤基能源清洁高效利用国家重点实验室开放基金(SKL202102); 山西省自然科学基金(20210302124123); 山西省自然科学基金(202303021211033)
Regioselective C(2) Methylthiolation and d3-Methylthiolation of Indoles Based on Dimethyl Sulfoxide (DMSO-d6) Reagents
Received date: 2023-10-26
Revised date: 2023-12-24
Online published: 2024-01-18
Supported by
State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology(SKL202102); Natural Science Foundation of Shanxi Province(20210302124123); Natural Science Foundation of Shanxi Province(202303021211033)
发展了一种Cu(OAc)2介导吲哚衍生物的C(2)选择性甲硫基化与三氘甲硫基化反应. 该转化以二甲基亚砜(DMSO)作为甲硫基来源与溶剂, 以中等至良好收率得到C(2)-甲硫基取代吲哚, 当选用DMSO-d6作为反应试剂时, 也可合成得到C(2)-三氘甲硫基取代吲哚. 同时, 该反应不依赖于高温条件, 转化可能涉及自由基途径.
关键词: 铜; 吲哚; 三氘甲硫基化; 甲硫基化; 二甲基亚砜(DMSO)
张娟 , 王奕森 , 田钰 , 徐晶 , 高文超 , 常宏宏 , 孟凡会 , 杨朋 . 基于氘代二甲基亚砜(DMSO-d6)实现吲哚C(2)位选择性甲硫基化与三氘甲硫基化反应[J]. 有机化学, 2024 , 44(5) : 1576 -1583 . DOI: 10.6023/cjoc202310026
Cu(OAc)2 mediated C(2)-selective d3-methylthiolation and methylthiolation of indoles were developed. With the choice of dimethyl sulfoxide (DMSO) as sulfur source and solvent, methylthiolation reaction could be achieved in moderate to good yields, and d3-methylthiolated products could also be obtained with DMSO-d6 as reagent just by prolong the reaction time. Moreover, this methylthiolation didn’t depend on high temperature, and radical pathway might be involved in this transformation.
Key words: copper; indole; d3-methylthiolation; methylthiolation; dimethyl sulfoxide (DMSO)
| [1] | (a) Jiang, X. Sulfur Chemistry, Springer, Switzerland, 2019, p. 475. |
| [1] | (b) Feng, M.; Tang, B.; Liang, H. S.; Jiang, X. Curr. Top. Med. Chem. 2016, 16, 1200. |
| [1] | (c) Dunbar, K. L.; Scharf, D. H.; Litomska, A.; Hertweck, C. Chem. Rev. 2017, 117, 5521. |
| [1] | (d) Ilardi, E. A.; Vitaku, E.; Njardarson, J. T. J. Med. Chem. 2014, 57, 2832. |
| [2] | (a) Wang, N.; Saidhareddy, P.; Jiang, X. Nat. Prod. Rep. 2020, 37, 246. |
| [2] | (b) Li, X.; Wang, X.; Li, Y.; Xiao, J.; Du, Y. Org. Biomol. Chem. 2022, 20, 4471. |
| [3] | (a) Shen, C.; Qiao, J.; Zhao, L.; Zheng, K.; Jin, J.; Zhang, P. Catal. Commun. 2017, 92, 114. |
| [3] | (b) Li, H. L.; Kuninobu, Y.; Kanai, M. Angew. Chem., Int. Ed. 2017 129, 1517. |
| [3] | (c) Chen, S.; Guo, X.; Hou, H.; Geng, S.; Liu, Z.; He, Y.; Xue, X.; Feng, Z. Angew. Chem., Int. Ed. 2023, 62, e202303470. |
| [4] | (a) Zhang, C.; Zhou, Y.; Huang, J.; Tu, C.; Zhou, X.; Yin, G. Org. Biomol. Chem. 2018, 16, 6316. |
| [4] | (b) Hu, L.; Wang, D.; Chen, X.; Yu, L.; Yu, Y.; Tan, Z.; Zhu, G. Org. Biomol. Chem. 2017, 15, 5674. |
| [4] | (c) Wang, M.; Qiao, Z.; Zhao, J.; Jiang, X. Org. Lett. 2018, 20, 6193. |
| [4] | (d) Zhang, B.; Li, X.; Li, X.; Sun, F.; Du, Y. Chin. J. Chem. 2020, 39, 887. |
| [5] | (a) Chen, X.; Hao, X. S.; Goodhue, C. E.; Yu, J. Q. J. Am. Chem. Soc. 2006, 128, 6790. |
| [5] | (b) Dai, C.; Xu, Z.; Huang, F.; Yu, Z.; Gao, Y.-F. J. Org. Chem. 2012, 77, 4414. |
| [5] | (c) Chu, L.; Yue, X.; Qing, F.-L. Org. Lett. 2010, 12, 1644. |
| [5] | (d) Liu, F. Org. Biomol. Chem. 2023, 21, 1153. |
| [6] | (a) Wu, X.-F.; Natteb, K. Adv. Synth. Catal. 2016, 358, 336. |
| [6] | (b) Tashrifi, Z.; Khanaposhtani, M. M.; Larijani, B.; Mahdavi, M. Adv. Synth. Catal. 2020, 362, 65. |
| [6] | (c) Lu, H.; Tong, Z.; Peng, L.; Wang, Z.; Yin, S.-F.; Kambe, N.; Qiu, R. Top Curr. Chem. 2022, 380, 55. |
| [7] | (a) Tian, Y.; Zhang, J. ; Gao, W.; Chang, H. Chin. J. Org. Chem. 2023, 43, 2391 (in Chinese). |
| [7] | ( 田钰, 张娟, 高文超, 常宏宏, 有机化学, 2023, 43, 2391.) |
| [7] | (b) Sun, Q.; Soule, J.-F. Chem. Soc. Rev. 2021, 50, 10806. |
| [8] | For review see: Li, X.; Wang, X.; Li, Y.; Xiao, J.; Du, Y. Org. Biomol. Chem. 2022, 20, 4471. |
| [9] | (a) Zhang, Z.; Chen, P.; Liu, G. Chem. Soc. Rev. 2022, 51, 1640. |
| [9] | (b) Li, Z.-L. Fang, G.-C.; Gu, Q.-S.; Liu, X.-Y. Chem. Soc. Rev. 2020, 49, 32. |
| [10] | (a) Zheng. C.; You. S.-L. Nat. Prod. Rep. 2019, 36, 1589. |
| [10] | (b) Leitch. J. A.; Bhonoah. Y.; Frost. C. G. ACS Catal. 2017, 7, 5618. |
| [10] | (c) Vitaku, E.; Smith, D. T.; Njardarson, J. T. J. Med. Chem. 2014, 57, 10257. |
| [11] | (a) Ankade, S. B.; Shabade, A. B.; Soni, V.; Punji, B. ACS Catal. 2021, 11, 3268. |
| [11] | (b) Sandtorv, A. H. Adv. Synth. Catal. 2015, 357, 2403. |
| [11] | (c) Joucla, L.; Djakovitch, L. Adv. Synth. Catal. 2009, 351, 673. |
| [11] | (d) Wen, J.; Shi, Z. Acc. Chem. Res. 2021, 54, 1723. |
| [11] | (e) Liu, Y.-H.; Xie, P.-P.; Liu, L.; Fan, J.; Zhang, Z.-Z.; Hong, X.; Shi, B.-F. J. Am. Chem. Soc. 2021, 143, 19112. |
| [12] | (a) Gensch, T.; Klauck, F. J. R.; Glorius, F. Angew. Chem., Int. Ed. 2016, 55, 11287. |
| [12] | (b) Zou, J.-F.; Huang, W.-S.; Li, L.; Xu, Z.; Zheng, Z.-J.; Yang, K.-F.; Xu, L.-W. RSC Adv. 2015, 5, 30389. |
| [13] | Wu, Y.; Ding, H.; Zhao, M.; Ni, Z.-H.; Cao, J.-P. Green Chem. 2020, 22, 4906. |
| [14] | Zhang, L.-Y.; Wu, Y.-H.; Wang, N.-X.; Gao, X.-W.; Yan, Z.; Xu, B.-C.; Liu, N.; Wang, B.-Z.; Xing, Y. Eur. J. Org. Chem. 2021, 2021, 1446. |
| [15] | Sharma, P.; Rohilla, S.; Jain, N. J. Org. Chem. 2015, 80, 4116. |
| [16] | Huang, J.; Sun, W.-W.; Li, J.-Q.; Ma, A.-D.; Liu, J.-K.; Wu, B. Org. Lett. 2023, 25, 528. |
| [17] | (a) Barreiro, E. J.; Kümmerle, A. E.; Fraga, C. A. M. Chem. Rev. 2011, 111, 5215. |
| [17] | (b) Sch?nherr, H.; Cernak, T. Angew. Chem., Int. Ed. 2013, 52, 12256. |
| [18] | Goyal, V.; Sarki, N.; Narani, A.; Naik, G.; Natte, K.; Jagadeesh, R. V. Coord. Chem. Rev. 2023, 474, 214827. |
| [19] | Schmidt, C. Nat. Biotechnol. 2017, 35, 493. |
| [20] | (a) Gao, Q.; Shang, Y.; Song, F.; Ye, J.; Liu, Z.-S.; Li, L.; Cheng, H.-G.; Zhou, Q. J. Am. Chem. Soc. 2019, 141, 15986. |
| [20] | (b) Wang, M.; Zhao, Y.; Zhao, Y.; Shi, Z. Sci. Adv. 2020, 6, eaba0946. |
| [21] | (a) Cui, X.; Liu, X.; Wang, X.; Tian, W.; Wei, D.; Huang, G. ChemistrySelect 2017, 2, 8607. |
| [21] | (b) Dighe, S. U.; Samanta, S. K.; Kolle, S.; Batra, S. Tetrahedron 2017, 73, 2455. |
| [22] | (a) Chen, Z.; Cao, G.; Zhang, F.; Li, H.; Xu, J.; Miao, M.; Ren, H. Synlett 2017, 28, 1795. |
| [22] | (b) Rastogi, G. K.; Deka, B.; Deb, M. L.; Baruah, P. K. Eur. J. Org. Chem. 2020, 2020, 424. |
/
| 〈 |
|
〉 |