研究论文

苄叉丙酮、硒粉和硼氢化钠一锅法构建四氢-2H-硒吡喃衍生物

  • 陈栋栋 ,
  • 杨旭锋
展开
  • 吕梁学院化学化工系 山西吕梁 033001

收稿日期: 2023-11-20

  修回日期: 2023-12-27

  网络出版日期: 2024-01-18

基金资助

山西省自然科学基金(20210302124072); 山西省自然科学基金(202203021222318); 山西省自然科学基金(202103021223386); 山西省高等学校科技创新(2021L568)

One-Pot Synthesis of Tetrahydro-2H-selenopyran Derivatives from Benzalacetones, Elemental Selenium, and Sodium Borohydride

  • Dongdong Chen ,
  • Xufeng Yang
Expand
  • Department of Chemistry & Chemical Engineering, Lyuliang University, Lvliang, Shanxi 033001

Received date: 2023-11-20

  Revised date: 2023-12-27

  Online published: 2024-01-18

Supported by

Natural Science Foundation of Shanxi Province(20210302124072); Natural Science Foundation of Shanxi Province(202203021222318); Natural Science Foundation of Shanxi Province(202103021223386); Program for the Innovative Talents of Higher Education Institutions of Shanxi(2021L568)

摘要

报道了一种以苄叉丙酮、硒粉和硼氢化钠为原料, 采用一锅法合成一系列四氢-2H-硒吡喃衍生物的新方法. 此反应通过形成6个新的化学键很好的构建一系列含硒六元环. 得到了20个含有四氢-2H-硒吡喃结构的小分子化合物, 最高产率可达91%. X单晶衍射分析表明四氢-2H-硒吡喃六元环与环己烷具有类似的空间立体结构, 呈现出稳定的椅式构象. 此反应在克量级规模下依然可以顺利进行. 可能的反应机理表明此反应为涉及双Michael加成/二硒键的断裂/Mi- chael加成/Aldol反应的多步串级反应. 此方法具有底物适应性强、不使用过度金属催化剂以及反应条件温和的特点.

本文引用格式

陈栋栋 , 杨旭锋 . 苄叉丙酮、硒粉和硼氢化钠一锅法构建四氢-2H-硒吡喃衍生物[J]. 有机化学, 2024 , 44(5) : 1641 -1648 . DOI: 10.6023/cjoc202311017

Abstract

A reaction has been developed to synthesize a series of tetrahydro-2H-selenopyran derivatives from benzalace- tones, sodium borohydride, and elemental selenium by one-pot method. The reaction proceeds well to construct a tetrahydro-2H-selenopyran ring and six new bonds. Twenty tetrahydro-2H-selenopyran derivatives were obtained, and the yield was up to 91%. The X-ray single crystal analysis showed that this selenium-containing heterocyclic ring exists as a stable chair conformation similar to cyclohexane. The reaction works well when scaled up to the gram scale. A possible mechanism was proposed, involving hydrogenation of selenium/double Michael addition/cleavage of diselenide bond/Michael addition/Aldol reaction. This reaction is characterized by high compatibility to substrates, transition-metal free, and mild reaction conditions.

参考文献

[1]
(a) Tang, J.; Singh, T.; Li, X.; Liu, L.; Zhou, T. J. Org. Chem. 2020, 85, 11959.
[1]
(b) Li, S.; Cao, Y.; Jiang, L. Q. Chin. J. Org. Chem. 2022, 42, 434 (in Chinese).
[1]
( 李珊, 曹原, 蒋绿齐, 有机化学, 2022, 42, 434.)
[1]
(c) Hu, Z.; Wu, J.; Wu, J.; Wu, F. Chin. J. Org. Chem. 2023, 43, 36 (in Chinese).
[1]
( 胡朝明, 吴纪红, 吴晶晶, 吴范宏, 有机化学, 2023, 43, 36.)
[2]
(a) Combs, G. F. Br. J. Nutr. 2001, 85, 517.
[2]
(b) Nogueira, C.W.; Zeni, G.; Rocha, J. B. T. Chem. Rev. 2004, 104, 6255.
[2]
(c) Weekley, C. M.; Harris, H. H. Chem. Soc. Rev. 2013, 42, 8870.
[2]
(d) Sahu, P. K.; Umme, T.; Yu, J. H.; Nayak, A.; Kim, G.; Noh, M.; Lee, J. Y.; Kim, D. D.; Jeong, L. S. J. Med. Chem. 2015, 58, 8734.
[2]
(e) Gajdács, M.; Spengler, G.; Sanmartín, C.; Mar?, M. A.; Handzlik, J.; Domínguez-álvarez, E. Biorg. Med. Chem. Lett. 2017, 27, 797.
[2]
(f) Chen, Z.; Lai, H.; Hou, L.; Chen, T. Chem. Commun. 2020, 56, 179.
[2]
(g) Xu, Y.; Li, C.; Meng, J.; Huang, Y.; Fu, J.; Liu, B.; Liu, Y.; Chen, N. Chin. J. Org. Chem. 2021, 41, 1012 (in Chinese).
[2]
( 许颖, 李晨, 孟建萍, 黄玉玲, 付纪源, 刘冰, 刘颖杰, 陈宁, 有机化学, 2021, 41, 1012.)
[2]
(h) Hou, W.; Xu, H. J. Med. Chem. 2022, 65, 4436.
[3]
(a) Modha, S. G.; Mehtab, V. P.; der Eycken, E. V. V. Chem. Soc. Rev. 2013, 42, 5042.
[3]
(b) Brutchey, R. L. Acc. Chem. Res. 2015, 48, 2918.
[3]
(c) Aufiero, M.; Sperger, T.; Tsang, A. S.; Schoenebeck, F. Angew. Chem., Int. Ed. 2015, 54, 10322.
[3]
(d) Wang, X.; Zhang, Y.; Sun, K.; Meng, J.; Zhang, B. Chin. J. Org. Chem. 2021, 41, 4588 (in Chinese).
[3]
( 王薪, 张艳, 孙凯, 孟建萍, 张冰, 有机化学, 2021, 41, 4588.)
[3]
(e) Chen, Y.; Lv, M.; Zhang, Y.; Wu, Y.; Ying, L.; Tang, J.; Gong, X.; Zhou, J.; Song, Z. J. Org. Chem. 2022, 87, 16175.
[3]
(f) Yan, B.; Xue, D.; Hu, J. Acta Chim. Sinica 2022, 80, 797 (in Chinese).
[3]
( 闫彬, 薛丁江, 胡劲松, 化学学报, 2022, 80, 797.)
[3]
(g) Yin, Y.; Li, C.; Sun, K.; Liu, Y.; Wang, X. Chin. J. Org. Chem. 2022, 42, 1431 (in Chinese).
[3]
( 殷一樊, 李晨, 孙凯, 刘颖杰, 王薪. 有机化学, 2022, 42, 1431.)
[4]
Xu, H.; Su, X.; Liu, X.; Zhang, K.; Hou, Z.; Guo, C. Biorg. Med. Chem. Lett. 2019, 29, 126726.
[5]
Choi, Y. S.; Kim, D. M.; Kim, Y. J.; Yang, S.; Lee, K. T.; Ryu, J. H.; Jeong, J. H. Int. J. Mol. Sci. 2015, 16, 29574.
[6]
(a) McIver, Z. A.; Kryman, M. W.; Choi, Y.; Coe, B. N.; chamerhorn, G. A.; Linder, M. K.; Davies, K. S.; Hill, J. E.; Sawada, G. A.; Grayson, J. M.; Detty, M. R. Biorg. Med. Chem. Lett. 2016, 24, 3918.
[6]
(b) Qiao, H.; Sun, B.; Yu, Q.; Huang, Y.; Zhou, Y.; Zhang, F. Org. Lett. 2019, 21, 6914.
[7]
(a) Ye, H.; Ren, T.; Wu, X. Chin. J. Org. Chem. 2021, 41, 4338 (in Chinese).
[7]
( 叶浩, 任婷婷, 吴新星, 有机化学, 2021, 41, 4338.)
[7]
(b) Zhang, Y.; Zhou, C.; Liu, G. Chin. J. Org. Chem., 2022, 42, 218 (in Chinese).
[7]
( 张云倩, 周晨凡, 刘功清, 有机化学, 2022, 42, 2180.)
[8]
(a) Szczepina, M. G.; Johnston, B. D.; Yuan, Y.; Svensson, B.; Pinto, B. M. J. Am. Chem. Soc. 2004, 126, 12458.
[8]
(b) Staples, M. K.; Schiesser, C. H. Chem. Commun. 2010, 46, 565.
[8]
(c) Ninomiya, M.; Garud, D. R.; Koketsu, M. Coord. Chem. Rev. 2011, 255, 2968.
[8]
(d) Iwasaki, M.; Tsuchiya, Y.; Nakajima, K.; Nishihara, Y. Org. Lett. 2014, 16, 4920.
[8]
(e) Mandal, A.; Dana, S.; Sahoo, H.; Grandhi, G. S.; Baidya, M. Org. Lett. 2017, 19, 2430.
[8]
(f) Gao, Y.; Zhang, P.; Li, G.; Zhao, Y. J. Org. Chem. 2018, 83, 13726.
[8]
(g) Bu?rger, M.; Ro?ttger, S. H.; Loch, M. N.; Jones, P. G.; Werz, D. B. Org. Lett. 2020, 22, 5025.
[9]
Levanova, E. P.; Grabel’nykh, V. A.; Elaev, A. V.; Russavskaya, N. V.; Klyba, L. V.; Albanov, A. I.; Korchevin, N. A. Chem. Heterocycl. Comp. 2012, 47, 1345.
[10]
Franzmann, P.; Beil, S. B.; Schollmeyer, D.; Waldvogel, S. R. Chem.-Eur. J. 2019, 25, 1936.
[11]
Virumbrales, C.; El-Remaily, M. A.; Suárez-Pantiga, S.; Fernández-Rodríguez, M. A.; Rodríguez, F.; Sanz, R. Org. Lett. 2022, 24, 8077.
[12]
(a) Song, K. X.; Qin, X. Y.; Ma, Z. X.; Geng, F. Z.; Hao, W. J.; Tu, S. J.; Jiang, B. Org. Chem. Front. 2021, 8, 5681.
[12]
(b) Amador-Sánchez, Y. A.; Hernández-Vázquez, E.; González-Mojica, N.; Ramírez-Apan, M. T.; Miranda, L. D. Tetrahedron 2020, 76, 131383.
[12]
(c) Zhao, L.; Yang, M.; Chen, H.; Ding, M. Chin. J. Org. Chem. 2022, 42, 3740 (in Chinese).
[12]
( 赵龙, 阳茂林, 陈皓冉, 丁明武, 有机化学, 2022, 42, 3740.)
[13]
(a) Kottalanka, R. K.; Naktode, K.; Anga, S.; Nayek, H. P.; Panda, T. K. Dalton. Trans. 2013, 42, 4947.
[13]
(b) Reddy, A. S.; Swamy, K. C. K. Org. Lett. 2015, 17, 2996.
[13]
(c) Vanitcha, A.; Damelincourt, C.; Gontard, G.; Vanthuyne, N.; Mouriès-Mansuy, V.; Fensterbank, L. Chem. Commun. 2016, 52, 6785.
[13]
(d) Winters, K. R.; Montchamp, J. L. J. Org. Chem. 2020, 85, 14545.
[14]
Chen, D.; Bai, Y.; Cheng, Q.; Li, J.; Tong, Z.; Hou, J.; Liu, T.; Guo, Y.; Tang, X.; Yang, X.; Yang, X. Arab. J. Chem. 2022, 15, 104097.
[15]
CCDC 2128170 (2a) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam. ac.uk/data_request/cif.
文章导航

/