研究论文

钯催化邻-碳硼烷基吡啶卤化物交叉偶联合成邻-碳硼烷基联芳、氨基吡啶和炔基吡啶衍生物

  • 罗东红 ,
  • 李平 ,
  • 陈志才 ,
  • 杨佳怡 ,
  • 孙梦凡 ,
  • 陆居有
展开
  • a 海南大学化学化工学院 海口 570228
    b 海南大学材料科学与工程学院 南海海洋资源利用国家重点实验室 海口 570228
†共同第一作者

收稿日期: 2023-10-21

  修回日期: 2024-01-13

  网络出版日期: 2024-01-30

基金资助

国家自然科学基金(22161015); 海南省自然科学基金(221RC448)

Pd-Catalyzed Cross-Coupling of o-Carboranyl Pyridyl Halides: Synthesis of o-Carboranyl Biaryls, Aminopyridines and Alkynylpyridine Derivatives

  • Donghong Luo ,
  • Ping Li ,
  • Zhicai Chen ,
  • Jiayi Yang ,
  • Mengfan Sun ,
  • Juyou Lu
Expand
  • a School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228
    b State Key Laboratory of Marine Resource Utilization in South China Sea, College of Materials Science and Engineering, Hainan University, Haikou 570228
†These authors contributed equally to this work.

Received date: 2023-10-21

  Revised date: 2024-01-13

  Online published: 2024-01-30

Supported by

National Natural Science Foundation of China(22161015); Hainan Provincial Natural Science Foundation of China(221RC448)

摘要

发展了一种钯催化邻-碳硼烷基吡啶卤化物与(杂)芳基硼酸交叉偶联反应合成邻-碳硼烷基联芳衍生物的高效方法. 该方法具有条件温和、官能团兼容性好等特点. 此外, 通过Buchwald-Hartwig反应及Sonogashira反应分别合成了邻-碳硼烷基氨基吡啶和炔基吡啶类化合物. 该类杂环芳基碳硼烷衍生物在发光材料以及药物等领域具有应用潜力.

本文引用格式

罗东红 , 李平 , 陈志才 , 杨佳怡 , 孙梦凡 , 陆居有 . 钯催化邻-碳硼烷基吡啶卤化物交叉偶联合成邻-碳硼烷基联芳、氨基吡啶和炔基吡啶衍生物[J]. 有机化学, 2024 , 44(5) : 1568 -1575 . DOI: 10.6023/cjoc202310018

Abstract

The Suzuki cross-coupling reaction between readily available o-carboranyl-substituted pyridyl halides and (hete- ro)arylboronic acids under Pd catalysis has been developed, providing access to o-carboranyl biaryls in yields of 35%~92%. The transformations proceed under mild conditions and with high functional group tolerance using commercially available coupling partners. Furthermore, the Buchwald-Hartwig reaction and Sonogashira reaction of o-carboranyl pyridyl halides are reported as well, leading to the facile synthesis of o-carboranyl aminopyridines and alkynylpyridine derivatives, respectively. It is believed that these heteroarylated carborane derivatives may find applications in luminescent materials and drug discovery.

参考文献

[1]
(a) Grimes, R. N. Carboranes, 2nd ed., Elsevier, Oxford, 2011.
[1]
(b) Xie, Z.; Jin, G. X. Dalton Trans. 2014, 43, 4924.
[2]
(a) Fisher, S. P.; Tomich, A. W.; Lovera, S. O.; Kleinsasser, J. F.; Guo, J.; Asay, M. J.; Nelson, H. M.; Lavallo, V. Chem. Rev. 2019, 119, 8262.
[2]
(b) Issa, F.; Kassiou, M.; Rendina, L. M. Chem. Rev. 2011, 111, 5701.
[3]
(a) Fisher, S. P.; Tomich, A. W.; Guo, J.; Lavallo, V. Chem. Commun. 2019, 55, 1684.
[3]
(b) Yao, Z. J.; Jin, G. X. Coord. Chem. Rev. 2013, 257, 2522.
[3]
(c) Qiu, Z.; Ren, S.; Xie, Z. Acc. Chem. Res. 2011, 44, 299.
[4]
(a) Saha, A.; Oleshkevich, E.; Vi?as, C.; Teixidor, F. Adv. Mater. 2017, 29, 1704238.
[4]
(b) Qian, E. Q.; Wixtrom, A. I.; Axtell, J. C.; Saebi, A.; Rehak, P.; Han, Y.; Moully, E. H.; Mosallaei, D.; Chow, S.; Messina, M.; Wang, J. Y.; Royappa, A. T.; Rheingold, A. L.; Maynard, H. D.; Kral, P.; Spokoyny, A. M. Nat. Chem. 2017, 9, 333.
[4]
(c) Koshino, M.; Tanaka, T.; Solin, N.; Suenaga, K.; Isobe, H.; Nakamura, E. Science 2007, 316, 853.
[5]
(a) Caminade, A.; Hey-Hawkins, E.; Manners, I. Chem. Soc. Rev. 2016, 45, 5144.
[5]
(b) Nú?ez, R.; Romero, I.; Teixidora, F.; Vi?as, C. Chem. Soc. Rev. 2016, 45, 5147.
[6]
(a) Sivaev, I. B.; Bregadze, V. I. Coord. Chem. Rev. 2019, 392, 146.
[6]
(b) Prokhorov, A. M.; Slepukhin, P. A.; Rusinov, V. L.; Kalininc, V. N.; Kozhevnikova, D. N. Chem. Commun. 2011, 47, 7713.
[7]
Luo, D. H.; Fu, Y. T.; Lu, J.-Y. Inorg. Chem. 2022, 61, 13756.
[8]
(a) Li, C. X.; Zhang, H. Y.; Wong, T. Y.; Cao, H. J.; Yan, H.; Lu, C. S. Org. Lett. 2017, 19, 5178.
[8]
(b) Sun, F. X.; Tan, S. M.; Cao, H. J.; Xu, J. K.; Bregadze, V. I.; Tu, D. H.; Lu, C. S.; Yan, H. Angew. Chem., Int. Ed. 2022, 61, e202207125.
[8]
(c) Sun, F. X.; Tan, S. M.; Cao, H. J.; Lu, C. S. Tu, D. S.; Poater, J. D.; Sola, M.; Yan, H. J. Am. Chem. Soc. 2023, 145, 3577.
[9]
Ko, K. H.; Lee, J. K.; Han, S.; Lee, P. H. Org. Lett., 2022, 24, 1507.
[10]
(a) Sun, C. F.; Lu, J.-Y.; Lu, J. Inorg. Chem. 2022, 61, 9623.
[10]
(b) Fu, Y.; Li, Y.; Luo, D.; Lu, Y.; Huang, J.; Yang, Z.; Lu, J.; Jiang, Y.-Y.; Lu, J.-Y. Inorg. Chem. 2022, 61, 911.
[10]
(c) Yang, Z.; Sun, C.; Wei, X.; Lu, J.; Lu, J.-Y. ChemCatChem 2022, e202101571.
[10]
(d) Yang, Z.; Wu, Y.; Fu, Y.; Yang, J.; Lu, J.; Lu, J.-Y. Chem. Commun. 2021, 57, 1655.
[10]
(e) Lu, J.-Y.; Zhao, B.; Du, Y.; Yang, J.; Lu, J. Org. Biomol. Chem. 2019, 17, 7438.
[10]
(f) Lu, J.-Y.; Wan, H.; Zhang, J.; Wang, Z.; Li, Y.; Du, Y.; Li, C.; Liu, Z. T.; Liu, Z. W.; Lu, J. Chem.-Eur. J. 2016, 22, 17542.
[10]
(g) Lu, J.-Y.; Du, Y.; Zhao, B.; Lu, J. Tetrahedron 2016, 72, 161.
[10]
(h) Lu, J.-Y.; Wan, H.; Xue, Y.; Du, Y.; Lu, J. Tetrahedron 2015, 71, 7842.
[11]
For selected reviews on functionalization of carboranes, see: (a) Qiu, Z.; Xie, Z. Acc. Chem. Res. 2021, 54, 4065.
[11]
(b) Au, Y.; Xie, Z. Bull. Chem. Soc. Jpn. 2021, 94, 879.
[11]
(c) Quan, Y.; Xie, Z. Chem. Soc. Rev. 2019, 48, 3660.
[11]
(d) Zhang, X.; Yan, H. Coord. Chem. Rev. 2019, 378, 466.
[11]
(e) Duttwyler, S. Pure Appl. Chem. 2018, 90, 733.
[11]
(f) Olid, D.; Nunez, R.; Vinas, C.; Teixidor, F. Chem. Soc. Rev. 2013, 42, 3318.
[11]
(g) Wang, Q.; Liu, B. F.; Feng, K. J.; Hashmi, A. S. K. Adv. Synth. Catal. 2022, 364, 4174.
[12]
(a) Heying, T. L.; Ager, J. W.; Clark, Jr., S. L.; Mangold, D. J.; Goldstein, H. L.; Hillman, M.; Polak, R. J.; Szymanski, J. W. Inorg. Chem. 1963, 2, 1089.
[12]
(b) Kusari, U.; Li, Y.; Bradley, M. G.; Sneddon, L. G. J. Am. Chem. Soc. 2004, 126, 8662.
[12]
(c) Li, Y.; Carroll, P. J.; Sneddon, L. G. Inorg. Chem. 2008, 47, 9193.
[12]
(d) El-Zaria, M. E.; Keskar, K.; Genady, A. R.; Ioppolo, J. A.; McNulty, J.; Valliant, J. F. Angew. Chem., Int. Ed. 2014, 53, 5156.
[13]
(a) Coult, R.; Fox, M. A.; Gill, W. R.; Herbertson, P. L.; Wade, K. J. Organomet. Chem. 1993, 462, 19.
[13]
(b) Tang, C.; Xie, Z. Angew. Chem., Int. Ed. 2015, 54, 7662.
[14]
Ni, H.; Qiu, Z.; Xie, Z. Angew. Chem., Int. Ed. 2017, 56, 712.
[15]
(a) Tang, W.; Capacci, A. G.; Wei, X.; Li, W.; White, A.; Patel, N. D.; Savoie, J.; Gao, J. J.; Rodriguez, S.; Qu, B.; Haddad, N.; Lu, B. Z.; Krishnamurthy, D.; Yee, N. K.; Senanayake, C. H. Angew. Chem., Int. Ed. 2010, 49, 5879.
[15]
(b) Li, B.; Zeng, H. C. ACS Appl. Mater. Interfaces 2020, 12, 33827.
[15]
(c) Tang, S.; Xu, Z. H.; Liu, T.; Wang, S.-W.; Yu, J.; Liu, J.; Hong, Y.; Chen, S.-L.; He, J.; Li, J.-H. Angew. Chem., Int. Ed. 2021, 60, 21360.
[16]
Nahabedian, K. V.; Kuivila, H. G. J. Am. Chem. Soc. 1961, 83, 2167.
[17]
(a) Ito, A.; Yokoyama, Y.; Aihara, R.; Fukui, K.; Eguchi, S.; Shizu, K.; Sato, T.; Tanaka, K. Angew. Chem., Int. Ed. 2010, 49, 8205.
[17]
(b) Yokoyama, Y.; Sakamaki, D.; Ito, A.; Tanaka, K.; Shiro, M. Angew. Chem., Int. Ed. 2012, 51, 9403.
[18]
Thorand, S.; Krause, N. J. Org. Chem. 1998, 63, 8551.
[19]
Yang, C. H.; Guo, T. F.; Sun, I. W. J. Lumin. 2007, 124, 93.
[20]
Cao, H. J.; Wei, X.; Zhang, X. L.; Lu, C. S.; Yan, H. Chem. Sci. 2021, 12, 15563.
[21]
Chen, Z.; Li, H.; Tao, Y.; Chen, L.; Chen, C.; Jiang, H.; Xu, S.; Zhou, X.; Chen, R.; Huang, W. ACS Omega 2019, 4, 9129.
文章导航

/