含氮芳香性杂环化合物的不对称氢化反应研究进展
Progress in Asymmetric Hydrogenation of Aromatic N-Heterocyclic Compounds
Received date: 2023-12-05
Revised date: 2024-01-15
Online published: 2024-01-30
手性饱和含氮杂环结构广泛存在于天然产物、生物活性分子和药物分子中. 利用含氮芳杂环化合物的不对称氢化反应来构筑该类化合物是最为直接有效的方法之一. 然而, 由于含氮芳杂环化合物具有很强的共轭稳定性, 且产物中氮原子对金属催化剂具有毒化作用, 该类化合物的不对称氢化反应的发展要滞后很多, 研究报道也相对较少. 其中, 如何开发高效的催化体系来实现活化惰性底物的同时, 对反应的立体选择性进行精确调控是相关研究的关键问题. 目前, 一系列过渡金属以及有机小分子催化剂的开发已经引领该领域取得了一定进展. 鉴于不同类型催化剂的结构和性质对于催化活性、反应选择性及底物适用范围的显著影响, 根据催化剂的反应性进行分类, 系统综述了含氮芳香性杂环化合物不对称氢化反应的研究进展.
刘晨光 . 含氮芳香性杂环化合物的不对称氢化反应研究进展[J]. 有机化学, 2024 , 44(5) : 1403 -1422 . DOI: 10.6023/cjoc202312004
The structure of chiral saturated N-heterocyclic compounds widely exists in natural products, bioactive molecules, and drug molecules. Catalytic asymmetric hydrogenation of aromatic N-heterocycles is one of the most effective methods for the construction of these compounds. However, due to the strong conjugation stability of nitrogen-containing aromatic heterocyclic compounds and the poison effect of nitrogen atoms in the products on metal catalysts, the development of asymmetric hydrogenation reactions of these compounds lags far behind, and there are relatively few research reports. Therefore, how to develop efficient catalytic systems to activate the inert substrate and precisely control the stereoselectivity of the reaction is the key scientific issue of relevant research. In recent years, the development of a series of metal and organo catalysts has led to significant progress and shown broad prospects for its applications. Considering that the structures and properties of different catalysts have remarkable influence on the reactivity, selectivity, and substrate generality of the target transformations, an overview of asymmetric hydrogenation of aromatic N-heterocyclic compounds categorized is provided according to the types of catalysts.
| [1] | (a) Taylor, R. D.; MacCoss, M.; Lawson, A. D. G. J. Med. Chem. 2014, 57, 5845. |
| [1] | (b) Vitaku, E.; Smith, D. T.; Njardarson, J. T. J. Med. Chem. 2014, 57, 10257. |
| [2] | Adis, E. Drugs R&D 2010, 10, 271. |
| [3] | Müller, T. Expert. Rev. Neurother. 2017, 17, 1135. |
| [4] | Hoffstetter, S.; Che Leong, F. Expert Opin. Drug Metab. Toxicol. 2009, 5, 345. |
| [5] | Janssen-Müller, D.; Schlepphorst, C.; Glorius, F. Chem. Soc. Rev. 2017, 46, 4845. |
| [6] | Galloway, W. R. J. D.; Isidro-Llobet, A.; Spring, D. R. Nat. Commun. 2010, 1, 80. |
| [7] | Ohkuma, T.; Ooka, H.; Hashiguchi, S.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc. 1995, 117, 2675. |
| [8] | (a) Ikariya, T.; Blacker, A. J. Acc. Chem. Res. 2007, 40, 1300. |
| [8] | (b) Ager, D. J.; de Vries, A. H. M.; de Vries, J. G. Chem. Soc. Rev. 2012, 41, 3340. |
| [9] | Wang, D.-S.; Chen, Q.-A.; Lu, S.-M.; Zhou, Y.-G. Chem. Rev. 2012, 112, 2557. |
| [10] | (a) Lu, S.-M.; Han, X.-W.; Zhou, Y.-G. Chin. J. Org. Chem. 2005, 25, 634 (in Chinese). |
| [10] | ( 卢胜梅, 韩秀文, 周永贵, 有机化学, 2005, 25, 634.) |
| [10] | (b) Wiesenfeldt, M. P.; Nairoukh, Z.; Dalton, T.; Glorius, F. Angew. Chem., Int. Ed. 2019, 58, 10460. |
| [10] | (c) Kim, A. N.; Stoltz, B. M. ACS Catal. 2020, 10, 13834. |
| [10] | (d) Gunasekar, R.; Goodyear, R. L.; Proietti Silvestri, I.; Xiao, J. Org. Biomol. Chem. 2022, 20, 1794. |
| [11] | (a) Zhang, Z.; Butt, N. A.; Zhou, M.; Liu, D.; Zhang, W. Chin. J. Chem. 2018, 36, 443. |
| [11] | (b) Wen, J.; Wang, F.; Zhang, X. Chem. Soc. Rev. 2021, 50, 3211. |
| [12] | Meng, W.; Feng, X.; Du, H. Acc. Chem. Res. 018, 51, 191. |
| [13] | Balakrishna, B.; Nunez-Rico, J. L.; Vidal-Ferran, A. Eur. J. Org. Chem. 2015, 2015, 5293. |
| [14] | Wang, Z.-X.; Bai, X.-Y.; Li, B.-J. Chin. J. Chem. 2019, 37, 1174. |
| [15] | Bianchini, C.; Barbaro, P.; Scapacci, G.; Farnetti, E.; Graziani, M. Organometallics 1998, 17, 3308. |
| [16] | Fabrello, A.; Bachelier, A.; Urrutigo?ty, M.; Kalck, P. Coord. Chem. Rev. 2010, 254, 273. |
| [17] | Sridharan, V.; Suryavanshi, P. A.; Menéndez, J. C. Chem. Rev. 2011, 111, 7157. |
| [18] | Wang, W.-B.; Lu, S.-M.; Yang, P.-Y.; Han, X.-W.; Zhou, Y.-G. J. Am. Chem. Soc. 2003, 125, 10536. |
| [19] | (a) Qiu, L.; Kwong, F. Y.; Wu, J.; Lam, W. H.; Chan, S.; Yu, W.-Y.; Li, Y.-M.; Guo, R.; Zhou, Z.; Chan, A. S. C. J. Am. Chem. Soc. 2006, 128, 5955. |
| [19] | (b) Tang, W.-J.; Zhu, S.-F.; Xu, L.-J.; Zhou, Q.-L.; Fan, Q.-H.; Zhou, H.-F.; Lam, K.; Chan, A. S. C. Chem. Commun. 2007, 613. |
| [19] | (c) Wang, X.-B.; Zhou, Y.-G. J. Org. Chem. 2008, 73, 5640. |
| [19] | (d) Tadaoka, H.; Cartigny, D.; Nagano, T.; Gosavi, T.; Ayad, T.; Genêt, J.-P.; Ohshima, T.; Ratovelomanana-Vidal, V.; Mashima, K. Chem.-Eur. J. 2009, 15, 9990. |
| [19] | (e) Gou, F.-R.; Li, W.; Zhang, X.; Liang, Y.-M. Adv. Synth. Catal. 2010, 352, 2441. |
| [19] | (f) Tang, W.; Sun, Y.; Xu, L.; Wang, T.; Fan, Q.-H.; Lam, K.-H.; Chan, A. S. C. Org. Biomol. Chem. 2010, 8, 3464. |
| [19] | (g) Tang, W.-J.; Tan, J.; Xu, L.-J.; Lam, K.-H.; Fan, Q.-H.; Chan, A. S. C. Adv. Synth. Catal. 2010, 352, 1055. |
| [19] | (h) Cai, X.-F.; Guo, R.-N.; Chen, M.-W.; Shi, L.; Zhou, Y.-G. Chem.-Eur. J. 2014, 20, 7245. |
| [20] | Lu, S.-M.; Han, X.-W.; Zhou, Y.-G. Adv. Synth. Catal. 2004, 346, 909. |
| [21] | John, J.; Wilson-Konderka, C.; Metallinos, C. Adv. Synth. Catal. 2015, 357, 2071. |
| [22] | Han, Z.; Liu, G.; Yang, X.; Dong, X.-Q.; Zhang, X. ACS Catal. 2021, 11, 7281. |
| [23] | Nú?ez-Rico, J. L.; Fernández-Pérez, H.; Vidal-Ferran, A. Green Chem. 2014, 16, 1153. |
| [24] | Ge, Y.; Wang, Z.; Han, Z.; Ding, K. Chem.-Eur. J. 2020, 26, 15482. |
| [25] | Baeza, A.; Pfaltz, A. Chem.-Eur. J. 2010, 16, 2036. |
| [26] | Lu, S.-M.; Wang, Y.-Q.; Han, X.-W.; Zhou, Y.-G. Angew. Chem., Int. Ed. 2006, 45, 2260. |
| [27] | Ye, Z.-S.; Guo, R.-N.; Cai, X.-F.; Chen, M.-W.; Shi, L.; Zhou, Y.-G. Angew. Chem., Int. Ed. 2013, 52, 3685. |
| [28] | Iimuro, A.; Yamaji, K.; Kandula, S.; Nagano, T.; Kita, Y.; Mashima, K. Angew. Chem., Int. Ed. 2013, 52, 2046. |
| [29] | Chen, M.-W.; Ji, Y.; Wang, J.; Chen, Q.-A.; Shi, L.; Zhou, Y.-G. Org. Lett. 2017, 19, 4988. |
| [30] | Welin, E. R.; Ngamnithiporn, A.; Klatte, M.; Lapointe, G.; Pototschnig, G. M.; McDermott, M. S. J.; Conklin, D.; Gilmore, C. D.; Tadross, P. M.; Haley, C. K.; Negoro, K.; Glibstrup, E.; Gruenanger, C. U.; Allan, K. M.; Virgil, S. C.; Slamon, D. J.; Stoltz, B. M. Science 2019, 363, 270. |
| [31] | Kim, A. N.; Ngamnithiporn, A.; Bartberger, M. D.; Stoltz, B. M. Chem. Sci. 2022, 13, 3227. |
| [32] | Legault, C. Y.; Charette, A. B. J. Am. Chem. Soc. 2005, 127, 8966. |
| [33] | Ye, Z.-S.; Chen, M.-W.; Chen, Q.-A.; Shi, L.; Duan, Y.; Zhou, Y.-G. Angew. Chem., Int. Ed. 2012, 51, 10181. |
| [34] | Huang, W.-X.; Liu, L.-J.; Wu, B.; Feng, G.-S.; Wang, B.; Zhou, Y.-G. Org. Lett. 2016, 18, 3082. |
| [35] | Chang, M.; Huang, Y.; Liu, S.; Chen, Y.; Krska, S. W.; Davies, I. W.; Zhang, X. Angew. Chem., Int. Ed. 2014, 53, 12761. |
| [36] | (a) Iimuro, A.; Higashida, K.; Kita, Y.; Mashima, K. Adv. Synth. Catal. 2016, 358, 1929. |
| [36] | (b) Zheng, L.-S.; Wang, F.; Ye, X.-Y.; Chen, G.-Q.; Zhang, X. Org. Lett. 2020, 22, 8882. |
| [36] | (c) Zhao, W.; Wang, W.; Zhou, H.; Liu, Q.; Ma, Z.; Huang, H.; Chang, M. Angew. Chem., Int. Ed. 2023, 62, e202308836. |
| [37] | Lei, A.; Chen, M.; He, M.; Zhang, X. Eur. J. Org. Chem. 2006, 2006, 4343. |
| [38] | Tang, W.; Xu, L.; Fan, Q.-H.; Wang, J.; Fan, B.; Zhou, Z.; Lam, K.-H.; Chan, A. S. C. Angew. Chem., Int. Ed. 2009, 48, 9135. |
| [39] | Nagano, T.; Iimuro, A.; Schwenk, R.; Ohshima, T.; Kita, Y.; Togni, A.; Mashima, K. Chem.-Eur. J. 2012, 18, 11578. |
| [40] | Huang, W.-X.; Yu, C.-B.; Shi, L.; Zhou, Y.-G. Org. Lett. 2014, 16, 3324. |
| [41] | Kita, Y.; Higashida, K.; Yamaji, K.; Iimuro, A.; Mashima, K. Chem. Commun. 2015, 51, 4380. |
| [42] | Kuwano, R.; Hashiguchi, Y.; Ikeda, R.; Ishizuka, K. Angew. Chem., Int. Ed. 2015, 54, 2393. |
| [43] | Feng, G.-S.; Shi, L.; Meng, F.-J.; Chen, M.-W.; Zhou, Y.-G. Org. Lett. 2018, 20, 6415. |
| [44] | (a) Khusnutdinova, J. R.; Milstein, D. Angew. Chem., Int. Ed. 2015, 54, 12236. |
| [44] | (b) Luo, Y.-E.; He, Y.-M.; Fan, Q.-H. Chem. Rec. 2016, 16, 2697. |
| [45] | Zhou, H.; Li, Z.; Wang, Z.; Wang, T.; Xu, L.; He, Y.; Fan, Q.-H.; Pan, J.; Gu, L.; Chan, A. S. C. Angew. Chem., Int. Ed. 2008, 47, 8464. |
| [46] | (a) Wang, T.; Zhuo, L.-G.; Li, Z.; Chen, F.; Ding, Z.; He, Y.; Fan, Q.-H.; Xiang, J.; Yu, Z.-X.; Chan, A. S. C. J. Am. Chem. Soc. 2011, 133, 9878. |
| [46] | (b) Ding, Z.-Y.; Wang, T.; He, Y.-M.; Chen, F.; Zhou, H.-F.; Fan, Q.-H.; Guo, Q.; Chan, A. S. C. Adv. Synth. Catal. 2013, 355, 3727. |
| [46] | (c) Wang, T.; Chen, Y.; Ouyang, G.; He, Y.-M.; Li, Z.; Fan, Q.-H. Chem.-Asian J. 2016, 11, 2773. |
| [47] | (a) Touge, T.; Arai, T. J. Am. Chem. Soc. 2016, 138, 11299. |
| [47] | (b) Yang, Z.; Chen, F.; He, Y.; Yang, N.; Fan, Q.-H. Angew. Chem., Int. Ed. 2016, 55, 13863. |
| [48] | Ding, Z.-Y.; Chen, F.; Qin, J.; He, Y.-M.; Fan, Q.-H. Angew. Chem., Int. Ed. 2012, 51, 5706. |
| [49] | Ma, W.; Zhang, J.; Xu, C.; Chen, F.; He, Y.-M.; Fan, Q.-H. Angew. Chem., Int. Ed. 2016, 55, 12891. |
| [50] | Qin, J.; Chen, F.; Ding, Z.; He, Y.-M.; Xu, L.; Fan, Q.-H. Org. Lett. 2011, 13, 6568. |
| [51] | Wang, T.; Chen, F.; Qin, J.; He, Y.-M.; Fan, Q.-H. Angew. Chem., Int. Ed. 2013, 52, 7172. |
| [52] | Kuwano, R.; Kashiwabara, M.; Ohsumi, M.; Kusano, H. J. Am. Chem. Soc. 2008, 130, 808. |
| [53] | Kuwano, R.; Kameyama, N.; Ikeda, R. J. Am. Chem. Soc. 2011, 133, 7312. |
| [54] | Urban, S.; Ortega, N.; Glorius, F. Angew. Chem., Int. Ed. 2011, 50, 3803. |
| [55] | Ortega, N.; Tang, D.-T. D.; Urban, S.; Zhao, D.; Glorius, F. Angew. Chem., Int. Ed. 2013, 52, 9500. |
| [56] | Schlepphorst, C.; Wiesenfeldt, M. P.; Glorius, F. Chem.-Eur. J. 2018, 24, 356. |
| [57] | Wiesenfeldt, M. P.; Moock, D.; Paul, D.; Glorius, F. Chem. Sci. 2021, 12, 5611. |
| [58] | Kuwano, R.; Sato, K.; Kurokawa, T.; Karube, D.; Ito, Y. J. Am. Chem. Soc. 2000, 122, 7614. |
| [59] | Kuwano, R.; Kashiwabara, M.; Sato, K.; Ito, T.; Kaneda, K.; Ito, Y. Tetrahedron: Asymmetry. 2006, 17, 521. |
| [60] | Kuwano, R.; Kaneda, K.; Ito, T.; Sato, K.; Kurokawa, T.; Ito, Y. Org. Lett. 2004, 6, 2213. |
| [61] | Renom-Carrasco, M.; Gajewski, P.; Pignataro, L.; de?Vries, J. G.; Piarulli, U.; Gennari, C.; Lefort, L. Chem.-Eur. J. 2016, 22, 9528. |
| [62] | Wen, J.; Tan, R.; Liu, S.; Zhao, Q.; Zhang, X. Chem. Sci. 2016, 7, 3047. |
| [63] | Wen, J.; Fan, X.; Tan, R.; Chien, H.-C.; Zhou, Q.; Chung, L. W.; Zhang, X. Org. Lett. 2018, 20, 2143. |
| [64] | Liu, G.; Zheng, L.; Tian, K.; Wang, H.; Chung, W. L.; Zhang, X.; Dong, X.-Q. CCS Chem. 2022, 5, 1398. |
| [65] | Xie, C.; Xiao, G.; Guo, Q.; Wu, X.; Zi, G.; Ding, W.; Hou, G. Chem. Sci. 2023, 14, 9048. |
| [66] | Duan, Y.; Li, L.; Chen, M.-W.; Yu, C.-B.; Fan, H.-J.; Zhou, Y.-G. J. Am. Chem. Soc. 2014, 136, 7688. |
| [67] | Wang, D.-S.; Chen, Q.-A.; Li, W.; Yu, C.-B.; Zhou, Y.-G.; Zhang, X. J. Am. Chem. Soc. 2010, 132, 8909. |
| [68] | (a) Duan, Y.; Chen, M.-W.; Ye, Z.-S.; Wang, D.-S.; Chen, Q.-A.; Zhou, Y.-G. Chem.-Eur. J. 2011, 17, 7193. |
| [68] | (b) Yu, C.-B.; Wang, J.; Zhou, Y.-G. Org. Chem. Front. 2018, 5, 2805. |
| [68] | (c) Yu, C.-B.; Li, X.; Zhou, Y.-G. Asian J. Org. Chem. 2019, 8, 1118. |
| [69] | Wang, D.-S.; Ye, Z.-S.; Chen, Q.-A.; Zhou, Y.-G.; Yu, C.-B.; Fan, H.-J.; Duan, Y. J. Am. Chem. Soc. 2011, 133, 8866. |
| [70] | Chen, M.-W.; Deng, Z.; Yang, Q.; Huang, J.; Peng, Y. Org. Chem. Front. 2019, 6, 746. |
| [71] | Cai, X.-F.; Huang, W.-X.; Chen, Z.-P.; Zhou, Y.-G. Chem. Commun. 2014, 50, 9588. |
| [72] | Chen, Z.-P.; Chen, M.-W.; Shi, L.; Yu, C.-B.; Zhou, Y.-G. Chem. Sci. 2015, 6, 3415. |
| [73] | Feng, G.-S.; Chen, M.-W.; Shi, L.; Zhou, Y.-G. Angew. Chem., Int. Ed. 2018, 57, 5853. |
| [74] | (a) Li, Y.-Y.; Yu, S.-L.; Shen, W.-Y.; Gao, J.-X. Acc. Chem. Res. 2015, 48, 2587. |
| [74] | (b) Seo, C. S. G.; Morris, R. H. Organometallics 2019, 38, 47. |
| [74] | (c) Liu, C.; Liu, Q. Chin. J. Org. Chem. 2022, 42, 3213 (in Chinese). |
| [74] | ( 刘晨光, 刘强, 有机化学, 2022, 42, 3213.) |
| [75] | Fleischer, S.; Zhou, S.; Werkmeister, S.; Junge, K.; Beller, M. Chem.-Eur. J. 2013, 19, 4997. |
| [76] | Wang, Y.; Wang, M.; Li, Y.; Liu, Q. Chem 2021, 7, 1180. |
| [77] | Liu, C.; Wang, M.; Liu, S.; Wang, Y.; Peng, Y.; Lan, Y.; Liu, Q. Angew. Chem., Int. Ed. 2021, 60, 5108. |
| [78] | Liu, C.; Liu, X.; Liu, Q. Chem 2023, 9, 2585. |
| [79] | Yang, Z.-Y.; Zhang, M.; Wang, X.-C. Synthesis 2022, 54, 1527. |
| [80] | Zhang, Z.; Du, H. Org. Lett. 2015, 17, 2816. |
| [81] | Zhang, Z.; Du, H. Angew. Chem., Int. Ed. 2015, 54, 623. |
| [82] | Li, X.; Tian, J.-J.; Liu, N.; Tu, X.-S.; Zeng, N.-N.; Wang, X.-C. Angew. Chem., Int. Ed. 2019, 58, 4664. |
| [83] | Chen, M.-W.; Wu, B.; Liu, Z.; Zhou, Y.-G. Acc. Chem. Res. 2023, 56, 2096. |
| [84] | Chen, Q.-A.; Wang, D.-S.; Zhou, Y.-G.; Duan, Y.; Fan, H.-J.; Yang, Y.; Zhang, Z. J. Am. Chem. Soc. 2011, 133, 6126. |
| [85] | Chen, Q.-A.; Gao, K.; Duan, Y.; Ye, Z.-S.; Shi, L.; Yang, Y.; Zhou, Y.-G. J. Am. Chem. Soc. 2012, 134, 2442. |
| [86] | Wang, J.; Zhu, Z.-H.; Chen, M.-W.; Chen, Q.-A.; Zhou, Y.-G. Angew. Chem., Int. Ed. 2019, 58, 1813. |
| [87] | Zhu, Z.-H.; Ding, Y.-X.; Zhou, Y.-G. Tetrahedron 2021, 83, 131968. |
| [88] | (a) Rueping, M.; Antonchick, A. P.; Theissmann, T. Angew. Chem., Int. Ed. 2006, 45, 3683. |
| [88] | (b) Guo, Q.-S.; Du, D.-M.; Xu, J. Angew. Chem., Int. Ed. 2008, 47, 759. |
| [88] | (c) Cai, X.-F.; Chen, M.-W.; Ye, Z.-S.; Guo, R.-N.; Shi, L.; Li, Y.-Q.; Zhou, Y.-G. Chem.-Asian J. 2013, 8, 1381. |
| [88] | (d) Chen, M.-W.; Cai, X.-F.; Chen, Z.-P.; Shi, L.; Zhou, Y.-G. Chem. Commun. 2014, 50, 12526. |
| [88] | (e) Wang, J.; Chen, M.-W.; Ji, Y.; Hu, S.-B.; Zhou, Y.-G. J. Am. Chem. Soc. 2016, 138, 10413. |
/
| 〈 |
|
〉 |