钯催化联烯胺区域选择性芳基酚氧化反应
收稿日期: 2023-09-04
修回日期: 2023-09-12
网络出版日期: 2024-01-31
基金资助
国家自然科学基金(22078178)
Palladium-Catalyzed Regioselective Aryl Phenoxylation of Allenamide
Received date: 2023-09-04
Revised date: 2023-09-12
Online published: 2024-01-31
Supported by
National Natural Science Foundation of China(22078178)
孟宪强 , 杨艺 , 梁万洁 , 王靖涛 , 张荣葵 , 刘会 . 钯催化联烯胺区域选择性芳基酚氧化反应[J]. 有机化学, 2024 , 44(1) : 224 -231 . DOI: 10.6023/cjoc202309003
A palladium-catalyzed regioselective aryl phenoxylation of allenamide with phenol derivatives has been developed, providing valuable branched allyl ether products in moderate to excellent yields under mild reaction conditions. Importantly, only the proximal addition products of allenamide were observed in the reaction process, and no distal addition products were observed. A coordinated palladium complex was proposed to be responsible for the excellent proximal addition in the insertion step. The final nucleophilic attack at α-position was induced by the steric effect of palladium complex.
Key words: palladium-catalysis; proximal addition; aryl phenoxylation
| [1] | (a) Wei, Y.; Shi, M. Org. Chem. Front. 2017, 4, 1876. |
| [1] | (b) Pulis, A. P.; Yeung, K. D.; Procter, J. Chem. Sci. 2017, 8, 5240. |
| [1] | (c) Alonso, J. M.; Quiros, M. T.; Munoz, M. P. Org. Chem. Front. 2016, 3, 1186. |
| [1] | (d) Koschker, P.; Breit, B. Acc. Chem. Res. 2016, 49, 1524. |
| [1] | (e) Ye, J.; Ma, S. Org. Chem. Front. 2014, 1, 1210. |
| [1] | (f) Yang, W.; Hashmi, A. S. K. Chem. Soc. Rev. 2014, 43, 2941. |
| [1] | (g) Wang, Z.; Xu, X.; Kwon, O. Chem. Soc. Rev. 2014, 43, 2927. |
| [1] | (h) Yu, S.; Ma, S. Angew. Chem., Int. Ed. 2012, 51, 3074. |
| [1] | (i) Krause, N.; Winter, C. Chem. Rev. 2011, 111, 1994. |
| [1] | (j) Ma, S. Acc. Chem. Res. 2009, 42, 1679. |
| [1] | (k) Jeganmohan, M.; Cheng, C. H. Chem.-Eur. J. 2008, 14, 10876. |
| [1] | (l) Bravo-Altamirano, K.; Abrunhosa-Thomas, I.; Montchamp, J. L. J. Org. Chem. 2008, 73, 2292. |
| [1] | (m) Ma, S. Chem. Rev. 2005, 105, 2829. |
| [1] | (n) Ma, S. Acc. Chem. Res. 2003, 36, 701. |
| [1] | (o) Bates, R. W.; Satcharoen, V. Chem. Soc. Rev. 2002, 31, 12. |
| [1] | (p) Lu, X.; Zhang, C.; Xu, Z. Acc. Chem. Res. 2001, 34, 535. |
| [2] | (a) Liu, Z.; Breit, B. Angew. Chem., Int. Ed. 2016, 128, 8580. |
| [2] | (b) McDonald, R. I.; Liu, G.; Stahl, S. S. Chem. Rev. 2011, 111, 2981. |
| [3] | (a) Guo, X.; Nelson, A. K.; Slebodnick, C.; Santos, W. L. ACS Catal. 2015, 5, 2172. |
| [3] | (b) Yang, F. Y.; Cheng, C. H. J. Am. Chem. Soc. 2001, 123, 761. |
| [3] | (c) Ishiyama, T.; Kitano, T.; Miyaura, N. Tetrahedron Lett. 1998, 39, 2357. |
| [3] | (d) Burks, H. E.; Liu, S.; Morken, J. P.; J. Am. Chem. Soc. 2007, 129, 8766. |
| [3] | (e) Pelz, N. F.; Woodward, A. R.; Burks, H. E.; Sieber, J. D.; Morken, J. P. J. Am. Chem. Soc. 2004, 126, 16328. |
| [4] | Chang, K. J.; Rayabarapu, D. K.; Yang, F. Y.; Cheng, C. H. J. Am. Chem. Soc. 2005, 127, 126. |
| [5] | (a) Truce, W. E.; Heuring, D. L.; Wolf, G. C. J. Org. Chem. 1974, 39, 238. |
| [5] | (b) Kang, S. K.; Seo, H. W.; Ha, Y. H. Synthesis 2001, 2001, 1321. |
| [5] | (c) Lu, N.; Zhang, Z.; Ma, N.; Wu, C.; Zhang, G.; Liu, Q.; Liu, T. Org. Lett. 2018, 20, 4318. |
| [6] | Zhang, G.; Xiong, T.; Wang, Z.; Xu, G.; Wang, X.; Zhang, Q. Angew. Chem., Int. Ed. 2015, 54, 12649. |
| [7] | Hu, J.; Xie, Y.; Huang, H. Angew. Chem., Int. Ed. 2014, 53, 7272. |
| [8] | (a) Yu, L.; Ren, L.; Guo, R.; Chen, T. Synth. Commun. 2011, 41, 1958. |
| [8] | (b) Kamiya, I.; Nishinaka, E.; Ogawa, A. Tetrahedron Lett. 2005, 46, 3649. |
| [8] | (c) Kodama, S.; Nishinaka, E.; Nomoto, A.; Sonoda, M.; Ogawa, A. Tetrahedron Lett. 2007, 48, 6312. |
| [8] | (d) Kippo, T.; Fukuyama, T.; Ryu, I. Org. Lett. 2011, 13, 3864. |
| [8] | (e) Hirata, Y.; Inui, T.; Nakao, Y.; Hiyama, T. J. Am. Chem. Soc. 2009, 131, 6624. |
| [8] | (f) Hua, R.; Tanaka, M. Tetrahedron Lett. 2004, 45, 2367. |
| [8] | (g) Toyofuku, M.; Murase, E.; Fujiwara, S.; Shinike, T.; Kuniyasu, H.; Kambe, N. Org. Lett. 2008, 10, 3957. |
| [8] | (h) Nakao, Y.; Shirakawa, E.; Tsuchimoto, T.; Hiyama, T. J. Org. Chem. 2004, 689, 3701. |
| [8] | (i) Xia, X.; Wang, Y.; Zhang, L.; Song, X.; Liu, X.; Liang, Y. Chem.-Eur. J. 2014, 20, 5087. |
| [8] | (j) Wang, H.; Glorius, F. Angew. Chem., Int. Ed. 2012, 51, 7318. |
| [8] | (k) Miura, T.; Yamauchi, M.; Kosaka, A.; Murakami, M. Angew. Chem., Int. Ed. 2010, 49, 4955. |
| [8] | (l) Kang, Y.; Kice, J. Tetrahedron Lett. 1982, 23, 5373. |
| [8] | (m) Yang, Y.; Wang, H.; Sun, Z.; Li, X.; Sun, F.; Liu, Q.; Liu, H. Org. Chem. Front. 2022, 9, 5969. |
| [9] | (a) Blieck, R.; Taillefer, M.; Monnier, F. Chem. Rev. 2020, 120, 13545. |
| [9] | (b) Enthaler, S. Chem. Soc. Rev. 2011, 40, 4912. |
| [9] | (c) Li, G.; Huo, X.; Jiang, X. Chem. Soc. Rev. 2020, 49, 2060. |
| [9] | (d) Kawamoto, T.; Hirabayashi, S.; Guo, X. Chem. Commun. 2009, 24, 3528. |
| [9] | (e) Liu, Z.; Breit, B. Org. Lett. 2018, 20, 300. |
| [10] | Okuro, K.; Alper, H. J. Org. Chem. 1997, 62, 1566. |
| [11] | Nishina, N.; Yamamoto, Y. Tetrahedron Lett. 2008, 49, 4908. |
| [12] | Oguri, H.; Tanaka, S.; Oishi, T.; Hirama, M. Tetrahedron Lett. 2000, 41, 975. |
| [13] | Oguri, H. Bull. Chem. Soc. Jpn. 2007, 80, 1870. |
| [14] | Donnard, M.; Tschamber, T.; Desrat, S.; Hinsinger, K.; Eustache, J. Tetrahedron Lett. 2008, 49, 1192. |
| [15] | Jiang, L.; Jia, T.; Wang, M.; Liao, J.; Cao, P. Org. Lett. 2015, 17, 1070. |
| [16] | Alam, K.; Li, T.; Hyatt, I. D.; Croatt, M. P. Org. Biomol. Chem. 2022, 20, 4719. |
| [17] | Yang, Y.; Wang, H.; Sun, Z.; Li, X.; Sun, F.; Liu, Q.; Zhang, L.; Xu, L.; Liu, H. Org. Chem. Front. 2022, 9, 5969. |
| [18] | (a) Suárez-Pantiga, S.; Hernández-Díaz, C.; Piedrafita, M.; Rubio, E.; González, J. M. Adv. Synth. Catal. 2012, 354, 1651. |
| [18] | (b) Ballesteros, A.; Morán-Poladura, P.; González, J. M. Chem. Commun. 2016, 52, 2905. |
| [18] | (c) Cui, J.; Meng, L.; Chi, X.; Liu, Q.; Zhao, P.; Zhang, D.; Chen, L.; Li, X.; Dong, Y.; Liu, H. Chem. Commun. 2019, 55, 4355. |
| [18] | (d) Du, X.; Zhao, H.; Li, X.; Zhang, L.; Dong, Y.; Wang, P.; Zhang, D.; Liu, Q.; Liu, H. J. Org. Chem. 2021, 86, 13276. |
/
| 〈 |
|
〉 |