综述与进展

二氧化碳参与的三组分偶联反应进展

  • 夏坤 ,
  • 张开发 ,
  • Sher Wali Khan ,
  • 阿布力米提?阿布都卡德尔
展开
  • a 新疆大学化学学院 碳基能源化学与利用国家重点实验室 乌鲁木齐 830017
    b 拉瓦尔品第女子大学化学系 拉瓦尔品第卫星镇 巴基斯坦 43600

收稿日期: 2023-09-13

  修回日期: 2023-12-19

  网络出版日期: 2024-02-07

基金资助

新疆省自然科学基金(2022E01069); 新疆省自然科学基金(2020D01C024); 国家自然科学基金(22061040); 国家自然科学基金(21562039)

Advances in Three-Component Coupling Reactions Involving CO2

  • Kun Xia ,
  • Kaifa Zhang ,
  • Sher Wali Khan ,
  • Abdukader Ablimit
Expand
  • a Key Laboratory of College of Chemistry, Xinjiang University, Urumqi 830000
    b Department of Chemistry, Rawalpindi Women University, Satelite Town of Rawalpindi, Pakistan 43600

Received date: 2023-09-13

  Revised date: 2023-12-19

  Online published: 2024-02-07

Supported by

Xinjiang Natural Science Foundation(2022E01069); Xinjiang Natural Science Foundation(2020D01C024); National Natural Science Foundation of China(22061040); National Natural Science Foundation of China(21562039)

摘要

二氧化碳(CO2)是一种有吸引力的绿色可再生C1资源, 将其作为反应原料或者促进剂直接参与有机合成反应, 是绿色化学所倡导的研究方向. 另一方面, 三组分偶联反应被认为是合成化学中最具吸引力的策略之一, 它能够以简单易得的原料直接合成复杂分子. 基于此, 综述了将CO2作为原料或促进剂, 参与的三组分偶联的反应体系, 以反应生成的产物类型进行分类: 羧基、酯基、羰基、烷基和氰基等一系列化合物以及CO2作为促进剂的反应体系, 并对此类反应的发展做出展望.

本文引用格式

夏坤 , 张开发 , Sher Wali Khan , 阿布力米提?阿布都卡德尔 . 二氧化碳参与的三组分偶联反应进展[J]. 有机化学, 2024 , 44(5) : 1506 -1525 . DOI: 10.6023/cjoc202309013

Abstract

Carbon dioxide (CO2) is the attractive green and renewable C1 resource, and its direct participation in organic synthesis reactions as a reaction feedstock or promoter, which is a research direction advocated by green chemistry. On the other hand, the three-component coupling reaction is considered to be one of the most attractive strategies in synthetic chemistry, which is capable of synthesizing complex molecules directly from simple and readily available raw materials. Based on this, this paper reviews the three-component coupling reaction systems involving CO2 as a raw material or promoter, categorizes them according to the types of products generated: carboxyl, ester, carbonyl, haloalkyl, and cyano compounds as well as CO2 as a promoter. An outlook on the development of such reactions is also given.

参考文献

[1]
Ngo, L. H.; Mishra, K. M.; Mishra, V.; Chien, T. C. Chem. Eng. Sci. 2021, 229, 116142.
[1]
Ran, C. K.; Liao, L. L.; Gao, T. Y.; Gui, Y. Y.; Yu, D. G. Curr. Opin. Green Sustainable Chem. 2021, 32, 100525.
[2]
Guo, Y. H.; Li, W.; Wen, Z. L.; Qi, C. R.; Jiang, H. F. Acta Phys. Chim. Sin. 2023, 40, 2307004 (in Chinese).
[2]
( 郭艳辉, 魏丽, 温中林, 戚朝荣, 江焕峰, 物理化学学报, 2023, 40, 2307004.)
[3]
Huang, W.; Lin, J. Y.; Deng, F.; Zhong, H. Asian J. Org. Chem. 2022, 11, e202200220.
[4]
Mao, B.; Wei, J. S.; Shi, M. Chem. Commun. 2022, 58, 9312.
[5]
Ye, J. H.; Ju, T.; Huang, H.; Liao, L. L.; Yu, D. G. Acc. Chem. Res. 2021, 54, 2518.
[6]
Zhang, Z.; Gong, L.; Zhou, X. Y.; Yan, S. S.; Li, J.; Yu, D. G. Acta Chim. Sinica 2019, 77, 783 (in Chinese).
[6]
( 张振, 龚莉, 周晓渝, 颜思顺, 李静, 余达刚, 化学学报, 2019, 77, 783.)
[7]
Zhang, Z.; Ye, J. H.; Ju, T.; Liao, L. L.; Huang, H.; Gui, Y. Y.; Yu, D. G. ACS Catal. 2020, 10, 10871.
[8]
Liao, L. L.; Wang, Z. H.; Cao, K. G.; Sun, G. Q.; Zhang, W.; Ran, C. K.; Yu, D. G. J. Am. Chem. Soc. 2022, 144, 2062.
[9]
Seo, H.; Nguyen, L. V.; Jamison, T. F. Adv. Synth. Catal. 2019, 361, 247.
[10]
Zhou, Z. H.; Xia, S. M.; He, L. N. Acta Phys., Chim. Sin. 2018, 34, 838 (in Chinese).
[10]
( 周智华, 夏书梅, 何良年, 物理化学学报, 2018, 34, 838.)
[11]
Qiu, L. Q.; Li, H. R.; He, L. N. Acc. Chem. Res. 2023, 56, 2225.
[12]
Saranya, S.; Rohit, K.; Radhika, S.; Anilkumar, G. Org. Biomol. Chem. 2019, 17, 8048.
[13]
Mannich, C.; Kr?sche, W. Arch. Pharm. 1912, 250, 647.
[14]
Strecker, A. Justus Liebigs Ann. Chem. 1854, 91, 349.
[15]
Ugi, I.; Meyr, R.; Fetzer, U.; Steinbruckner, C. Angew. Chem. 1959, 71, 386.
[16]
Wu, P.; Givskov, M.; Nielsen, T. E. Chem. Rev. 2019, 119, 11245.
[17]
Tian, Y. M.; Wang, H.; K?nig, B. Chem. Sci. 2022, 13, 241.
[18]
Okumura, S.; Takahashi, T.; Torii, K.; Uozumi, Y. Chem.-Eur. J. 2023, e202300840.
[19]
Chatterjee, R.; Bhaumik, A. Curr. Org. Chem. 2022, 26, 60.
[20]
Sang, R.; Kucmierczyk, P.; Dühren, R.; Razzaq, R.; Dong, K. W.; Liu, J.; Franke, R.; Jackstell, R.; Beller, M. Angew. Chem., Int. Ed. 2019, 58, 14365.
[21]
Wang, Y.; Qian Q. L; Zhang, J. J.; Bediako, B. A.; Wang, Z. P.; Liu, H. Z.; Han, B. X. Nat. Commun. 2019, 10, 5395.
[22]
Zhang, Y.; Zhang, J.; Wang, Y.; Li, Y.; He, J.; Wang, Y.; Han, B. X. Organometallics 2023, 42, 2312.
[23]
Kim, Y.; Park, G. D.; Balamurugan, M.; Seo, J.; Min, B. K.; Nam, K. T. Adv. Sci. 2020, 7, 1900137.
[24]
Xu, P.; Wang, S.; Xu, H.; Liu, Y. Q.; Li, R. B.; Liu, W. W.; Zhu, X. ACS Catal. 2023, 13, 2149.
[25]
Ye, J. H.; Miao, M.; Huang, H.; Yan, S. S.; Yin, Z. B.; Zhou, W. J.; Yu, D. G. Angew. Chem., Int. Ed. 2017, 56, 15416.
[26]
Yue, J. P.; Xu, J. C.; Luo, H. T.; Chen, X. W.; Song, H. X.; Deng, Y.; Yu, D. G. Nat. Catal. 2023, 6, 959.
[27]
Song, L.; Fu, D. M.; Chen, L.; Jiang, Y. X.; Ye, J. H.; Zhu, L.; Lan, Y.; Fu, Q.; Yu, D. G. Angew. Chem., nt. Ed. 2020, 59, 21121.
[28]
Zhang, W. Z.; Zhang, N.; Guo, X. C.; Lü, X. B. Chin. J. Org. Chem. 2017, 37, 1309 (in Chinese).
[28]
( 张文珍, 张宁, 郭春晓, 吕小兵, 有机化学, 2017, 37, 1309.)
[29]
Wang, S.; Xi, C. J. Org. Lett. 2018, 20, 4131.
[30]
Deng, Y. Q.; Yang, T. B.; Wang, H.; Yang, C.; Cheng, L. H.; Yin, S. F.; Kambe, N.; Qiu, R. H. Top. Curr. Chem. 2021, 379, 42.
[31]
Sun, L.; Ye, J. H.; Zhou, W. J.; Zeng, X.; Yu, D. G. Org. Lett. 2018, 20, 3049.
[32]
Inaloo, I. D.; Majnooni, S. New J. Chem. 2019, 43, 11275.
[33]
Wang, J. W.; Qian, P.; Hu, K. F.; Zha, Z. G.; Wang, Z. Y. ChemElectroChem 2019, 6, 4292.
[34]
Sahari, A.; Puumi, J.; Mannisto, J. K.; Repo, T. J. Org. Chem. 2023, 88, 3822.
[35]
Liu, Q. Y.; Li, M.; Xiong, R.; Mo, F. Y. Org. Lett. 2017, 19, 6756.
[36]
Wang, L.; Shi, F. X.; Qi, C. R.; Xu, W. J.; Xiong, W. F.; Kang, B. X.; Jiang, H. F. Chem. Sci. 2021, 12, 11821.
[37]
Sun, S.; Zhou, C.; Yu, J. T.; Cheng, J. Org. Lett. 2019, 21, 6579.
[38]
Liu, S. Q.; Zhang, K.; Meng, Y. T.; Xu, J. X.; Chen, N. Org. Biomol. Chem. 2023, 21, 6892.
[39]
Zhang, S. K.; Neumann, H.; Beller, M. Chem. Soc. Rev. 2020, 49, 3187.
[40]
Mancuso, R. Catalysts 2021, 11, 470.
[41]
Lian, Z.; Nielsen, D. U.; Lindhardt, A. T.; Daasbjerg, K.; Skryd- strup, T. Nat. Commun. 2016, 7, 13782.
[42]
Cerveri, A.; Pace, S.; Monari, M.; Lombardo, M.; Bandini, M. Chem.-Eur. J. 2019, 25, 15272.
[43]
Mampuys, P.; Neumann, H.; Sergeyev, S.; Orru, R. V. A.; Jiao, H.; Spannenberg, A.; Maes, B. U. W.; Beller, M. ACS Catal. 2017, 7, 5549.
[44]
Ran, C. K.; Song, L.; Niu, Y. N.; Wei, M. K.; Zhang, Z.; Zhou, X. Y.; Yu, D. G. Green Chem. 2021, 23, 274.
[45]
Matsutani, T.; Aoyama, K.; Moriuchi, T. Organometallics 2023, 42, 1310.
[46]
Moulay, S. Curr. Org. Chem. 2018, 22, 1986.
[47]
Zhang, X. W.; Wang, S.; Xi, C. J. J. Org. Chem. 2019, 84, 9744.
[48]
Guo, Z. Q.; Zhang, B.; Wei, X. H.; Xi, C. J. Org. Lett. 2018, 20, 6678.
[49]
Ke, Z. G.; Zhao, Y. F.; Li R. P; Wang, H.; Zeng, W.; Tang, M. H.; Han, B. X.; Liu, Z. M. Green Chem. 2021, 23, 9147.
[50]
Das, A.; Sarkar, P.; Maji, S.; Pati, S. K.; Mandal, S. K. Angew. Chem., Int. Ed. 2022, 61, e202213614.
[51]
Gautam, N.; Logdi, R.; Sreejyothi, P.; Roy, A.; Tiwari, A. K.; Mandal, S. K. Chem. Sci. 2023, 14, 5079.
[52]
Zhao, Y. L.; Liu, X.; Zheng, L. J.; Du, Y. L.; Shi, X. R.; Liu, Y. L.; Yan, Z. Q.; You, J. M.; Jiang, Y. Y. J. Org. Chem. 2020, 85, 912.
[53]
Peng, L. F.; Hu, Z. F.; Wang, H.; Wu, L.; Jiao, Y. C.; Tang, Z. L.; Xu, X. H. RSC Adv. 2020, 10, 10232.
[54]
Wang, H.; Dong, Y. N.; Zheng, C. N.; Sandoval, C. A.; Wang, X.; Makha, M.; Li, Y. H. Chem 2018, 4, 2883.
[55]
Dong, Y. N.; Yang, P. J.; Zhao, S. Z.; Li, Y. H. Nat. Commun. 2020, 11, 4096.
[56]
Sahoo, P. K.; Zhang, Y.; Das, S. ACS Catal. 2021, 11, 3414.
[57]
Schilling, W.; Das, S. Tetrahedron Lett. 2018, 59, 3821.
[58]
Fauziev, R. V.; Ivanov, R. E.; Kuchurov, I. V.; Zlotin, S. G. Green Chem. 2021, 23, 10137.
[59]
Shiozuka, A.; Sekine, K.; Kuninobu, Y. Org. Lett. 2021, 23, 4774.
文章导航

/