二氧化碳参与的三组分偶联反应进展
收稿日期: 2023-09-13
修回日期: 2023-12-19
网络出版日期: 2024-02-07
基金资助
新疆省自然科学基金(2022E01069); 新疆省自然科学基金(2020D01C024); 国家自然科学基金(22061040); 国家自然科学基金(21562039)
Advances in Three-Component Coupling Reactions Involving CO2
Received date: 2023-09-13
Revised date: 2023-12-19
Online published: 2024-02-07
Supported by
Xinjiang Natural Science Foundation(2022E01069); Xinjiang Natural Science Foundation(2020D01C024); National Natural Science Foundation of China(22061040); National Natural Science Foundation of China(21562039)
夏坤 , 张开发 , Sher Wali Khan , 阿布力米提?阿布都卡德尔 . 二氧化碳参与的三组分偶联反应进展[J]. 有机化学, 2024 , 44(5) : 1506 -1525 . DOI: 10.6023/cjoc202309013
Carbon dioxide (CO2) is the attractive green and renewable C1 resource, and its direct participation in organic synthesis reactions as a reaction feedstock or promoter, which is a research direction advocated by green chemistry. On the other hand, the three-component coupling reaction is considered to be one of the most attractive strategies in synthetic chemistry, which is capable of synthesizing complex molecules directly from simple and readily available raw materials. Based on this, this paper reviews the three-component coupling reaction systems involving CO2 as a raw material or promoter, categorizes them according to the types of products generated: carboxyl, ester, carbonyl, haloalkyl, and cyano compounds as well as CO2 as a promoter. An outlook on the development of such reactions is also given.
Key words: carbon dioxide; green chemistry; three-component coupling; promoter
| [1] | Ngo, L. H.; Mishra, K. M.; Mishra, V.; Chien, T. C. Chem. Eng. Sci. 2021, 229, 116142. |
| [1] | Ran, C. K.; Liao, L. L.; Gao, T. Y.; Gui, Y. Y.; Yu, D. G. Curr. Opin. Green Sustainable Chem. 2021, 32, 100525. |
| [2] | Guo, Y. H.; Li, W.; Wen, Z. L.; Qi, C. R.; Jiang, H. F. Acta Phys. Chim. Sin. 2023, 40, 2307004 (in Chinese). |
| [2] | ( 郭艳辉, 魏丽, 温中林, 戚朝荣, 江焕峰, 物理化学学报, 2023, 40, 2307004.) |
| [3] | Huang, W.; Lin, J. Y.; Deng, F.; Zhong, H. Asian J. Org. Chem. 2022, 11, e202200220. |
| [4] | Mao, B.; Wei, J. S.; Shi, M. Chem. Commun. 2022, 58, 9312. |
| [5] | Ye, J. H.; Ju, T.; Huang, H.; Liao, L. L.; Yu, D. G. Acc. Chem. Res. 2021, 54, 2518. |
| [6] | Zhang, Z.; Gong, L.; Zhou, X. Y.; Yan, S. S.; Li, J.; Yu, D. G. Acta Chim. Sinica 2019, 77, 783 (in Chinese). |
| [6] | ( 张振, 龚莉, 周晓渝, 颜思顺, 李静, 余达刚, 化学学报, 2019, 77, 783.) |
| [7] | Zhang, Z.; Ye, J. H.; Ju, T.; Liao, L. L.; Huang, H.; Gui, Y. Y.; Yu, D. G. ACS Catal. 2020, 10, 10871. |
| [8] | Liao, L. L.; Wang, Z. H.; Cao, K. G.; Sun, G. Q.; Zhang, W.; Ran, C. K.; Yu, D. G. J. Am. Chem. Soc. 2022, 144, 2062. |
| [9] | Seo, H.; Nguyen, L. V.; Jamison, T. F. Adv. Synth. Catal. 2019, 361, 247. |
| [10] | Zhou, Z. H.; Xia, S. M.; He, L. N. Acta Phys., Chim. Sin. 2018, 34, 838 (in Chinese). |
| [10] | ( 周智华, 夏书梅, 何良年, 物理化学学报, 2018, 34, 838.) |
| [11] | Qiu, L. Q.; Li, H. R.; He, L. N. Acc. Chem. Res. 2023, 56, 2225. |
| [12] | Saranya, S.; Rohit, K.; Radhika, S.; Anilkumar, G. Org. Biomol. Chem. 2019, 17, 8048. |
| [13] | Mannich, C.; Kr?sche, W. Arch. Pharm. 1912, 250, 647. |
| [14] | Strecker, A. Justus Liebigs Ann. Chem. 1854, 91, 349. |
| [15] | Ugi, I.; Meyr, R.; Fetzer, U.; Steinbruckner, C. Angew. Chem. 1959, 71, 386. |
| [16] | Wu, P.; Givskov, M.; Nielsen, T. E. Chem. Rev. 2019, 119, 11245. |
| [17] | Tian, Y. M.; Wang, H.; K?nig, B. Chem. Sci. 2022, 13, 241. |
| [18] | Okumura, S.; Takahashi, T.; Torii, K.; Uozumi, Y. Chem.-Eur. J. 2023, e202300840. |
| [19] | Chatterjee, R.; Bhaumik, A. Curr. Org. Chem. 2022, 26, 60. |
| [20] | Sang, R.; Kucmierczyk, P.; Dühren, R.; Razzaq, R.; Dong, K. W.; Liu, J.; Franke, R.; Jackstell, R.; Beller, M. Angew. Chem., Int. Ed. 2019, 58, 14365. |
| [21] | Wang, Y.; Qian Q. L; Zhang, J. J.; Bediako, B. A.; Wang, Z. P.; Liu, H. Z.; Han, B. X. Nat. Commun. 2019, 10, 5395. |
| [22] | Zhang, Y.; Zhang, J.; Wang, Y.; Li, Y.; He, J.; Wang, Y.; Han, B. X. Organometallics 2023, 42, 2312. |
| [23] | Kim, Y.; Park, G. D.; Balamurugan, M.; Seo, J.; Min, B. K.; Nam, K. T. Adv. Sci. 2020, 7, 1900137. |
| [24] | Xu, P.; Wang, S.; Xu, H.; Liu, Y. Q.; Li, R. B.; Liu, W. W.; Zhu, X. ACS Catal. 2023, 13, 2149. |
| [25] | Ye, J. H.; Miao, M.; Huang, H.; Yan, S. S.; Yin, Z. B.; Zhou, W. J.; Yu, D. G. Angew. Chem., Int. Ed. 2017, 56, 15416. |
| [26] | Yue, J. P.; Xu, J. C.; Luo, H. T.; Chen, X. W.; Song, H. X.; Deng, Y.; Yu, D. G. Nat. Catal. 2023, 6, 959. |
| [27] | Song, L.; Fu, D. M.; Chen, L.; Jiang, Y. X.; Ye, J. H.; Zhu, L.; Lan, Y.; Fu, Q.; Yu, D. G. Angew. Chem., nt. Ed. 2020, 59, 21121. |
| [28] | Zhang, W. Z.; Zhang, N.; Guo, X. C.; Lü, X. B. Chin. J. Org. Chem. 2017, 37, 1309 (in Chinese). |
| [28] | ( 张文珍, 张宁, 郭春晓, 吕小兵, 有机化学, 2017, 37, 1309.) |
| [29] | Wang, S.; Xi, C. J. Org. Lett. 2018, 20, 4131. |
| [30] | Deng, Y. Q.; Yang, T. B.; Wang, H.; Yang, C.; Cheng, L. H.; Yin, S. F.; Kambe, N.; Qiu, R. H. Top. Curr. Chem. 2021, 379, 42. |
| [31] | Sun, L.; Ye, J. H.; Zhou, W. J.; Zeng, X.; Yu, D. G. Org. Lett. 2018, 20, 3049. |
| [32] | Inaloo, I. D.; Majnooni, S. New J. Chem. 2019, 43, 11275. |
| [33] | Wang, J. W.; Qian, P.; Hu, K. F.; Zha, Z. G.; Wang, Z. Y. ChemElectroChem 2019, 6, 4292. |
| [34] | Sahari, A.; Puumi, J.; Mannisto, J. K.; Repo, T. J. Org. Chem. 2023, 88, 3822. |
| [35] | Liu, Q. Y.; Li, M.; Xiong, R.; Mo, F. Y. Org. Lett. 2017, 19, 6756. |
| [36] | Wang, L.; Shi, F. X.; Qi, C. R.; Xu, W. J.; Xiong, W. F.; Kang, B. X.; Jiang, H. F. Chem. Sci. 2021, 12, 11821. |
| [37] | Sun, S.; Zhou, C.; Yu, J. T.; Cheng, J. Org. Lett. 2019, 21, 6579. |
| [38] | Liu, S. Q.; Zhang, K.; Meng, Y. T.; Xu, J. X.; Chen, N. Org. Biomol. Chem. 2023, 21, 6892. |
| [39] | Zhang, S. K.; Neumann, H.; Beller, M. Chem. Soc. Rev. 2020, 49, 3187. |
| [40] | Mancuso, R. Catalysts 2021, 11, 470. |
| [41] | Lian, Z.; Nielsen, D. U.; Lindhardt, A. T.; Daasbjerg, K.; Skryd- strup, T. Nat. Commun. 2016, 7, 13782. |
| [42] | Cerveri, A.; Pace, S.; Monari, M.; Lombardo, M.; Bandini, M. Chem.-Eur. J. 2019, 25, 15272. |
| [43] | Mampuys, P.; Neumann, H.; Sergeyev, S.; Orru, R. V. A.; Jiao, H.; Spannenberg, A.; Maes, B. U. W.; Beller, M. ACS Catal. 2017, 7, 5549. |
| [44] | Ran, C. K.; Song, L.; Niu, Y. N.; Wei, M. K.; Zhang, Z.; Zhou, X. Y.; Yu, D. G. Green Chem. 2021, 23, 274. |
| [45] | Matsutani, T.; Aoyama, K.; Moriuchi, T. Organometallics 2023, 42, 1310. |
| [46] | Moulay, S. Curr. Org. Chem. 2018, 22, 1986. |
| [47] | Zhang, X. W.; Wang, S.; Xi, C. J. J. Org. Chem. 2019, 84, 9744. |
| [48] | Guo, Z. Q.; Zhang, B.; Wei, X. H.; Xi, C. J. Org. Lett. 2018, 20, 6678. |
| [49] | Ke, Z. G.; Zhao, Y. F.; Li R. P; Wang, H.; Zeng, W.; Tang, M. H.; Han, B. X.; Liu, Z. M. Green Chem. 2021, 23, 9147. |
| [50] | Das, A.; Sarkar, P.; Maji, S.; Pati, S. K.; Mandal, S. K. Angew. Chem., Int. Ed. 2022, 61, e202213614. |
| [51] | Gautam, N.; Logdi, R.; Sreejyothi, P.; Roy, A.; Tiwari, A. K.; Mandal, S. K. Chem. Sci. 2023, 14, 5079. |
| [52] | Zhao, Y. L.; Liu, X.; Zheng, L. J.; Du, Y. L.; Shi, X. R.; Liu, Y. L.; Yan, Z. Q.; You, J. M.; Jiang, Y. Y. J. Org. Chem. 2020, 85, 912. |
| [53] | Peng, L. F.; Hu, Z. F.; Wang, H.; Wu, L.; Jiao, Y. C.; Tang, Z. L.; Xu, X. H. RSC Adv. 2020, 10, 10232. |
| [54] | Wang, H.; Dong, Y. N.; Zheng, C. N.; Sandoval, C. A.; Wang, X.; Makha, M.; Li, Y. H. Chem 2018, 4, 2883. |
| [55] | Dong, Y. N.; Yang, P. J.; Zhao, S. Z.; Li, Y. H. Nat. Commun. 2020, 11, 4096. |
| [56] | Sahoo, P. K.; Zhang, Y.; Das, S. ACS Catal. 2021, 11, 3414. |
| [57] | Schilling, W.; Das, S. Tetrahedron Lett. 2018, 59, 3821. |
| [58] | Fauziev, R. V.; Ivanov, R. E.; Kuchurov, I. V.; Zlotin, S. G. Green Chem. 2021, 23, 10137. |
| [59] | Shiozuka, A.; Sekine, K.; Kuninobu, Y. Org. Lett. 2021, 23, 4774. |
/
| 〈 |
|
〉 |