研究论文

银催化环状Morita-Baylis-Hillman醇及其类似物与芳基乙烯的顺式[5+2]环加成反应研究

  • 崔永伟 ,
  • 梁春苗 ,
  • 祝海涛 ,
  • 申成平 ,
  • 任飞扬 ,
  • 孙梦涵 ,
  • 赵媛 ,
  • 王文静 ,
  • 王冬梅 ,
  • 周妮妮
展开
  • 宝鸡文理学院化学化工学院 陕西省植物化学重点实验室 陕西宝鸡 721013

收稿日期: 2023-11-02

  修回日期: 2024-01-17

  网络出版日期: 2024-02-07

基金资助

陕西省自然科学基金(2021JQ-802); 陕西省教育厅科研计划(21JK0476); 陕西省创新能力推进计划(2022TD-63); 秦岭药用植物及有机功能分子研究与开发利用创新团队资助项目

cis-Selective [5+2]-Cycloaddition Reactions of Cyclic Morita-Baylis- Hillman Alcohols and Its Analogues with Arylethylenes Catalyzed by Ag(I)

  • Yongwei Cui ,
  • Chunmiao Liang ,
  • Haitao Zhu ,
  • Chengping Shen ,
  • Feiyang Ren ,
  • Menghan Sun ,
  • Yuan Zhao ,
  • Wenjing Wang ,
  • Dongmei Wang ,
  • Nini Zhou
Expand
  • College of Chemistry and Chemical Engineering, Shannxi Key Laboratory of Phytochemistry, Baoji University of Arts and Sciences, Baoji, Shaanxi 721013

Received date: 2023-11-02

  Revised date: 2024-01-17

  Online published: 2024-02-07

Supported by

Natural Science Foundation of Shaanxi Province(2021JQ-802); Scientific Research Program Funded by Shaanxi Provincial Education Department(21JK0476); Innovation Capability Support Program of Shaanxi Province(2022TD-63); Innovation R&D Team of BUAS on Qinling Medicinal Plants and Functional Organic Molecules

摘要

开发了AgSbF6催化环状Morita-Baylis-Hillman醇及其类似物与芳基乙烯的顺式[5+2]环加成反应, 同时有效构建了茚酮稠合苯并[7]轮烯骨架化合物. 密度泛函理论(DFT)计算结果表明, 1,3-顺式选择性可能受动力学控制. 二氢二苯并[a,f]薁-12-酮产物3a可以通过区域选择性的氢化和环丙烷化反应进行衍生化.

本文引用格式

崔永伟 , 梁春苗 , 祝海涛 , 申成平 , 任飞扬 , 孙梦涵 , 赵媛 , 王文静 , 王冬梅 , 周妮妮 . 银催化环状Morita-Baylis-Hillman醇及其类似物与芳基乙烯的顺式[5+2]环加成反应研究[J]. 有机化学, 2024 , 44(5) : 1535 -1548 . DOI: 10.6023/cjoc202311002

Abstract

An AgSbF6-catalyzed diastereoselective [5+2]-cycloaddition reaction was developed as an efficient entry into indanone-fused benzo[7]annulene frameworks from cyclic Morita-Baylis-Hillman alcohols and its analogues with aryl- ethylenes. Density functional theory (DFT) calculation data analysis shows that 1,3-cis-selectivity might be mainly controlled by kinetics. The resulting dihydrodibenzo[a,f]azulen-12-one 3a can be further functionalized by using the regioselective hydrogenation and cyclopropanation.

参考文献

[1]
(a) Zheng, S. Q.; Lu, X. Y. Org. Lett. 2009, 11, 3978.
[1]
(b) Declerck, V.; Martinez, J.; Lamaty, F. Chem. Rev. 2009, 109, 1.
[1]
(c) Basavaiah, D.; Reddy, B. S.; Badsara, S. S. Chem. Rev. 2010, 110, 5447.
[1]
(d) Ojha, D. P.; Prabhu, K. R. Org. Lett. 2015, 17, 4490.
[1]
(e) Guo, H. C.; Fan, Y. C.; Sun, Z. H.; Wu, Y.; Kwon, O. Chem. Rev. 2018, 118, 10049.
[1]
(f) Zhong, Y.; Zhao, X. Y.; Gan, L.; Hong, S. H.; Jiang, X. X. Org. Lett. 2018, 20, 4250.
[1]
(g) Wang, Y.; Jia, S. M.; Li, E. Q.; Duan, Z. J. Org. Chem. 2019, 84, 15323.
[1]
(h) Meng, Z. R.; Wang, Q. Q.; Lu, D. D.; Yue, T. T.; Ai, P.; Liu, H.; Yang, W. R.; Zheng, J. J. Org. Chem. 2020, 85, 15026.
[1]
(i) Lu, Z. Y.; Jia, Y. W.; Chen, X. L.; Li, P. F. J. Org. Chem. 2022, 87, 3184.
[1]
(j) He, Y. L.; Cai, W.; Huang, Y. Org. Lett. 2023, 25, 3347.
[1]
(k) Bhattacharyya, H.; Saha, S. J.; Verma, K.; Punniyamurthy, T. L. Org. Lett. 2023, 25, 6830.
[2]
(a) Martínez, I.; Andrews, A. E.; Emch, J. D.; Ndakala, A. J.; Wang, J.; Howell, A. R. Org. Lett. 2003, 5, 399.
[2]
(b) Linstadt, R. T. H.; Peterson, C. A.; Jette, C. I.; Boskovic, Z. V.; Lipshutz, B. H. Org. Lett. 2017, 19, 328.
[2]
(c) Mantovani, S.; Pintus, A.; Kovtun, A.; Bertuzzi, G.; Melucci, M.; Bandini, M. Eur. J. Org. Chem. 2023, 26, e202300641.
[3]
(a) Wu, C.; Zeng, H.; Liu, Z.; Liu, L.; Wang, D.; Chen, Y. J. Chin. J. Chem. 2011, 29, 2732.
[3]
(b) Li, Y. X.; Xuan, Q. Q.; Liu, L.; Wang, D.; Chen, Y. J.; Li, C. J. J. Am. Chem. Soc. 2013, 135, 12536.
[4]
Cai, X.; Xing, H.; Qiu, J.; Li, B.; Xie, P. Org. Lett. 2021, 23, 4368.
[5]
(a) Gendrineau, T.; Genet, J. P.; Darses, S. Org. Lett. 2010, 12, 308.
[5]
(b) Wang, Y.; Feng, X.; Du, H. Org. Lett. 2011, 13, 4954.
[5]
(c) Wang, F.; Li, S.; Qu, M.; Zhao, M. X.; Liu, L. J.; Shi, M. Chem. Commun. 2011, 47, 12813.
[6]
Zhang, X. X.; Rao, W. D.; Sally; Chan, P. W. H. Org. Biomol. Chem. 2009, 7, 4186.
[7]
Piao, C. R.; Zhao, Y. L.; Han, X. D.; Liu, Q. J. Org. Chem. 2008, 73, 2264.
[8]
Xie, P.; Li, S.; Liu, Y.; Cai, X.; Wang, J.; Yang, X.; Loh, T. P. Org. Lett. 2020, 22, 31.
[9]
Xie, P. Z.; Wang, J. Y.; Fan, J.; Liu, Y. N.; Wo, X. Y.; Loh, T. P. Green Chem. 2017, 19, 2135.
[10]
(a) Olomola, T. O.; Klein, P.; Caira, M. R.; Kaye, P. T. J. Org. Chem. 2016, 81, 109.
[10]
(b) Takizawa, S. B.; Arteaga, F. A.; Kishi, K.; Hirata, S. C.; Sasai, H. Org. Lett. 2014, 16, 4162.
[10]
(c) Wu, C.; Liu, Y. L.; Zeng, H.; Liu, L.; Wang, D.; Chen, Y. J. Org. Biomol. Chem. 2011, 9, 253.
[10]
(d) Xuan, Q. Q.; Zhong, N. J.; Ren, C. L.; Liu, L.; Wang, D.; Chen, Y. J.; Li, C. J. J. Org. Chem. 2013, 78, 11076.
[10]
(e) Lorion, M. M.; Gasperini, D.; Oble, J. L.; Poli, G. Org. Lett. 2013, 15, 3050.
[11]
(a) Qiao, Z.; Shafiq, Z.; Liu, L.; Yu, Z. B.; Zheng, Q. Y.; Wang, D.; Chen, Y. J. Angew. Chem., Int. Ed. 2010, 49, 7294.
[11]
(b) Qiao, Z.; Zhong, N. J.; Zhang, T.; Liu, L.; Wang, D.; Chen, Y. J. Eur. J. Org. Chem. 2013, 2013, 2140.
[12]
Basavaiah, D.; Srivardhana, J. S.; Reddy, R. J. J. Org. Chem. 2004, 69, 7379.
[13]
Janreddy, D.; Kavala, V. B.; Kotipalli, T.; Rajawinslin, R. R.; Kuo, C. W.; Huanga, W. C.; Yao, C. F. Org. Biomol. Chem. 2014, 12, 8247.
[14]
Sruthi, P. R.; Saranya, T. V.; Anas, S. ChemistrySelect 2020, 5, 1648.
[15]
Reddy, C. R.; Warudikar, K. K.; Sridhar, B. B. ACS Omega 2018, 3, 15734.
[16]
Reddy, C. R.; Patil, A. D. Org. Lett. 2021, 23, 4749.
[17]
Yang, H. T.; Ren, W. L.; Miao, C. B.; Dong, C. P.; Yang, Y.; Xi, H. T.; Meng, Q.; Jiang, Y.; Sun, X. Q. J. Org. Chem. 2013, 78, 1163.
[18]
Zhou, L. J.; Yuan, C. H.; Zeng, Y.; Wang, Q. J.; Wang, C.; Liu, M.; Wang, W.; Wu, Y. J.; Zheng, B.; Guo, H. C. Org. Lett. 2019, 21, 4882.
[19]
Stiller, J. L.; Kowalczyk, D.; Jiang, H.; J?rgensen, K. A.; Albrecht, L. Chem.-Eur. J. 2014, 20, 13108.
[20]
Ren, C. L.; Wei, F.; Xuan, Q. Q.; Wang, D.; Liu, L. Adv. Synth. Catal. 2016, 358, 132.
[21]
Yang, Q. Q.; Yin, X.; He, X. L.; Du, W.; Chen, Y. C. ACS Catal. 2019, 9, 1258.
[22]
(a) Tan, W.; Zhang, J. Y.; Cao, C. H.; Shi, F. Sci. China: Chem. 2023, 66, 966.
[22]
(b) Nguyen, T. V.; Hartmann, J. M.; Enders, D. Synthesis 2013, 45, 845.
[23]
Zhu, H. T.; Liang, C. M.; Li, T. Y.; Li, L. Y.; Zhang, R. L.; Wang, J. N.; Qi, R. Q.; Zhang, J. M.; Yang, R. H.; Yang, Y. Q.; Zhou, A. X.; Jin, X. J.; Zhou, N. N. J. Org. Chem. 2023, 88, 3409.
[24]
CCDC 2305056 (3a), 2305052 (3w), 2305058 (4a) and 2305060 (5a) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_ request/cif.
[25]
Hajra, S.; Roy, S.; Saleh, S. A. Org. Lett. 2018, 20, 4540.
[26]
Gao, F.; Webb, J. D.; Sorek, H.; Wemmer, D. E.; Hartwig, J. F. ACS Catal. 2016, 6, 7385.
[27]
(a) Wang, H. Q.; Yang, S.; Zhang, Y. C.; Shi, F. Chin. J. Org. Chem. 2023, 43, 974 (in Chinese).
[27]
( 王海清, 杨爽, 张宇辰, 石枫, 有机化学, 2023, 43, 974.)
[27]
(b) Zhang, H. H.; Shi, F. Chin. J. Org. Chem. 2022, 42, 3351 (in Chinese).
[27]
( 张洪浩, 石枫, 有机化学, 2022, 42, 3351.)
[27]
(c) Shi, Y. C.; Yan, X. Y.; Wu, P.; Jiang, S.; Xu, R.; Tan, W.; Shi, F. Chin. J. Chem. 2023, 41, 27.
[27]
(d) Sheng, F. T.; Yang, S.; Wu, S. F.; Zhang, Y. C.; Shi, F. Chin. J. Chem. 2022, 40, 2151.
[28]
(a) Zhou, N. N.; Ning, S. S.; Tong, X. J.; Luo, T. T.; Yang, J.; Li, L. Q.; Fan, M. J.; Yang, D. S.; Zhu, H. T. J. Org. Chem. 2019, 84, 8497.
[28]
(b) Satpathi, B.; Ramasastry, S. S. V. Angew. Chem., Int. Ed. 2016, 55, 1777.
文章导航

/