研究论文

可见光诱导二氢喹唑啉酮碳碳键断裂与三氟甲基取代烯烃的脱氟烷基化反应研究

  • 曹香雪 ,
  • 贾雅会 ,
  • 殷世纪 ,
  • 徐亮 ,
  • 韦玉 ,
  • 宋欢欢
展开
  • a 石河子大学兵团能源发展研究院 新疆石河子 832003
    b 石河子大学化学化工学院 化工绿色过程省部共建国家重点实验室培育基地 新疆石河子 832003

收稿日期: 2023-11-26

  修回日期: 2024-01-24

  网络出版日期: 2024-02-07

基金资助

国家自然科学基金(22061036); 国家自然科学基金(21963010)

Visible-Light-Induced C—C Bond Cleavage of Dihydroquinazolinones with Trifluoromethyl-Substituted Olefins Defluorinated Alkylation Reactions

  • Xiangxue Cao ,
  • Yahui Jia ,
  • Shiji Yin ,
  • Liang Xu ,
  • Yu Wei ,
  • Huanhuan Song
Expand
  • a Bingtuan Energy Development Institute, Shihezi University, Shihezi, Xinjiang 832003
    b State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, Xinjiang 832003

Received date: 2023-11-26

  Revised date: 2024-01-24

  Online published: 2024-02-07

Supported by

National Natural Science Foundation of China(22061036); National Natural Science Foundation of China(21963010)

摘要

开发了一种可见光诱导的二氢喹唑啉酮碳碳键断裂产生烷基自由基, 与三氟甲基取代烯烃发生脱氟烷基化的方法. 该反应具有无金属参与、条件温和、无需碱或添加剂和底物适用范围广等优点, 为合成各种烷基取代的偕二氟烯烃提供了一种便捷、高效的新方法.

本文引用格式

曹香雪 , 贾雅会 , 殷世纪 , 徐亮 , 韦玉 , 宋欢欢 . 可见光诱导二氢喹唑啉酮碳碳键断裂与三氟甲基取代烯烃的脱氟烷基化反应研究[J]. 有机化学, 2024 , 44(5) : 1549 -1557 . DOI: 10.6023/cjoc202311028

Abstract

The visible-light-induced C—C bond cleavage of dihydroquinazolinone to generate alkyl radicals for defluorinated alkylation reactions with α-trifluoromethyl alkene is reported. The method is featured as transition-metal-free, mild conditions, base- or additive-free, and has a wide range of substrate applicability, which provides a convenient and efficient new method for the synthesis of various alkyl-substituted gem-difluoroalkene.

参考文献

[1]
(a) Kim, Y.-S.; Shin, D.-H. J. Agric. Food Chem. 2004, 52, 781.
[1]
(b) Ertl, P.; Schuhmann, T. J. Nat. Prod. 2019, 82, 1258.
[2]
Foley, D. J.; Waldmann, H. Chem. Soc. Rev. 2022, 51, 4094.
[3]
(a) Dai, X.-J.; Li, C.-J. J. Am. Chem. Soc. 2016, 138, 5433.
[3]
(b) Dai, X.-J.; Li, C.-C.; Li, C.-J. Chem. Soc. Rev. 2021, 50, 10733.
[4]
(a) Leemans, E.; D’hooghe, M.; De Kimpe, N. Chem. Rev. 2011, 111, 3268.
[4]
(b) Huang, C.-Y.; Doyle, A. G. Chem. Rev. 2014, 114, 8153.
[5]
(a) Zard, S. Z. Chem. Soc. Rev. 2008, 37, 1603.
[5]
(b) Wu, X.; Zhu, C. Chem. Rec. 2018, 18, 587.
[5]
(c) Liu, L.; Duan, X.-H.; Guo, L.-N. Synthesis 2021, 53, 4375.
[5]
(d) Yu, X.-Y.; Chen, J.-R.; Xiao, W.-J. Chem. Rev. 2020, 121, 506.
[6]
(a) Fumagalli, G.; Stanton, S.; Bower, J. F. Chem. Rev. 2017, 117, 9404.
[6]
(b) Xia, Y.; Dong, G. Nat. Rev. Chem. 2020, 4, 600.
[7]
Li, L.; Fang, L.; Wu, W.; Zhu, J. Org. Lett. 2020, 22, 5401.
[8]
(a) Lv, X.-Y.; Abrams, R.; Martin, R. Nat. Commun. 2022, 13, 2394.
[8]
(b) Lv, X.-Y.; Abrams, R.; Martin, R. Angew. Chem., Int. Ed. 2023, 62, e202217386.
[8]
(c) Cong, F.; Mega, R. S.; Chen, J.; Day, C. S.; Martin, R. Angew. Chem., Int. Ed. 2023, 62, e202214633.
[9]
(a) Mondal, P. P.; Pal, A.; Prakash, A. K.; Sahoo, B. Nat. Commun. 2022, 58, 13202.
[9]
(b) Mondal, P. P.; Das, S.; Venugopalan, S.; Krishnan, M.; Sahoo, B. Org. Lett. 2023, 25, 1441.
[9]
(c) Bag, S.; Ojha, S.; Venugopalan, S.; Sahoo, B. J. Org. Chem. 2023, 88, 12121.
[10]
(a) Yedase, G. S.; Arif, M.; Kuniyil, R.; Yatham, V. R. Org. Lett. 2023, 25, 6200.
[10]
(b) Wu, H.; Chen, S.; Xiao, D.; Li, F.; Zhou, K.; Yin, X.; Liu, C.; He, X.; Shang, Y. Org. Lett. 2023, 25, 1166.
[11]
(a) O’Hagan, D. Chem. Soc. Rev. 2008, 37, 308.
[11]
(b) Hagmann, W. K. J. Med. Chem. 2008, 51, 4359.
[12]
(a) Magueur, G.; Crousse, B.; Ourévitch, M.; Bonnet-Delpon, D.; Bégué, J.-P. J. Fluorine Chem. 2006, 127, 637.
[12]
(b) Meanwell, N. A. J. Med. Chem. 2011, 54, 2529.
[13]
(a) Hu, M.; Ni, C.; Li, L.; Han, Y.; Hu, J. J. Am. Chem. Soc. 2015, 137, 14496.
[13]
(b) Fujita, T.; Takazawa, M.; Sugiyama, K.; Suzuki, N.; Ichikawa, J. Org. Lett. 2017, 19, 588.
[14]
(a) Lang, S. B.; Wiles, R. J.; Kelly, C.B.; Molander, G. A. Angew. Chem., Int. Ed. 2017, 56, 15073.
[14]
(b) Chen, H.; Anand, D.; Zhou, L. Asian J. Org. Chem. 2019, 8, 661.
[14]
(c) Qi, J.; Zhang, F.-L.; Jin, J.-K.; Zhao, Q.; Li, B.; Liu, L.-X.; Wang, Y.-F. Angew. Chem., Int. Ed. 2020, 59, 12876.
[14]
(d) Wang, B.; Wang, C.-T.; Li, X.-S.; Liu, X.-Y.; Liang, Y.-M. Org. Lett. 2022, 24, 6566.
[15]
(a) Zu, W.; Day, C.; Wei, L.; Jia, X.; Xu, L. Chem. Commun. 2020, 56, 8273.
[15]
(b) Wei, L.; Zhang, J.; Xu, L. ACS Sustain. Chem. Eng. 2020, 8, 13894.
[15]
(c) Wei, L.; Wei, Y.; Zhang, J.; Xu, L. Green Chemistry 2021, 23, 4446.
[15]
(d) Zhu, Y.; Zu, W.; Tian, Q.; Cao, Z.; Wei, Y.; Xu, L. Org. Chem. Front. 2022, 9, 1070.
[15]
(e) Tian, W.; Xu, L.; Wei, Y.; Li, P. Chin. J. Org. Chem. 2023, 43, 1792 (in Chinese).
[15]
( 田维娜, 徐亮, 韦玉, 李鹏飞, 有机化学, 2023, 43, 1792.)
[16]
Chen, Y.; Ni, N.; Cheng, D.; Xu, X. Tetrahedron Lett. 2020, 61, 152425.
[17]
Cai, Z.; Gu, R.; Si, W.; Xiang, Y.; Sun, J.; Jiao, Y.; Zhang, X. Green Chem. 2022, 24, 6830.
[18]
Gao, P.; Zhang, Q.; Li, Y.; Cui, L.; Fan, X.; Zhang, G.; Chen, F. ChemistrySelect 2023, 8, e202300665.
[19]
Du, H.-W.; Chen, Y.; Sun, J.; Gao, Q.-S.; Wang, H.; Zhou, M.-D. Org. Lett. 2020, 22, 9342.
[20]
Yue, F.; Ma, H.; Song, H.; Liu, Y.; Dong, J.; Wang, Q. Chem. Sci. 2022, 13, 13466.
[21]
Yang, R.-Y.; Wang, H.; Xu, B. Chem. Commun. 2021, 57, 4831.
文章导航

/