吡唑啉酮与磺酰氯的直接磺酰化合成吡唑磺酸酯
收稿日期: 2023-12-08
修回日期: 2024-01-21
网络出版日期: 2024-02-20
基金资助
国家自然科学基金(21762041); 国家自然科学基金(21861036); 国家自然科学基金(21961037); 新疆维吾尔自治区自然科学基金(2022E01042); 新疆维吾尔自治区自然科学基金(2022TSYCCX0024); 新疆维吾尔自治区自然科学基金(2021D01E10)
Direct Sulfonylation of Pyrazolones with Sulfonyl Chlorides to Synthesize Pyrazolyl Sulfonates
Received date: 2023-12-08
Revised date: 2024-01-21
Online published: 2024-02-20
Supported by
National Natural Science Foundation of China(21762041); National Natural Science Foundation of China(21861036); National Natural Science Foundation of China(21961037); Natural Science Foundation of Xinjiang Uyghur Autonomous Region(2022E01042); Natural Science Foundation of Xinjiang Uyghur Autonomous Region(2022TSYCCX0024); Natural Science Foundation of Xinjiang Uyghur Autonomous Region(2021D01E10)
王斌 , 韩万仓 , 代林林 , 张永红 , 夏昱 , 金伟伟 , 刘晨江 . 吡唑啉酮与磺酰氯的直接磺酰化合成吡唑磺酸酯[J]. 有机化学, 2024 , 44(6) : 1998 -2005 . DOI: 10.6023/cjoc202312008
Pyrazole as a core framework exists in many bioactive molecules and has a wide range of applications in pharmaceuticals, agricultural chemicals and other functional materials. Sulfonates are important intermediates in organic synthesis and play a very important role in organic chemistry. A green and efficient method for the synthesis of pyrazolyl sulfonate compounds by using pyrazolones and sulfonyl chlorides as starting materials was developed. This method features the advantages of simple and easy to operate, without the need for any additives, metal or oxidant. It only requires room temperature and water as the solvent to efficiently synthesize important pyrazolyl sulfonates. The smooth progress of the gram scale reaction and product transformation further proves the practicality of this method.
Key words: pyrazolone; sulfonyl chloride; sulfonylation; pyrazolyl sulfonate
| [1] | (a) Wang, G.-C.; Li, T.; Deng, F.-Y.; Li, Y.-L.; Ye, W.-C. Bioorg. Med. Chem. Lett. 2013, 23, 1379. |
| [1] | (b) Yu, S.; Li, F.; Kim, S. J. Org. Chem. 2017, 82, 6992. |
| [1] | (c) Iliopoulou, D.; Vagias, C.; Harvala, C.; Roussis, V. Nat. Prod. Lett. 2000, 14, 373. |
| [2] | (a) Kleman, P.; González-Liste, P. J.; García-Garrido, S. E.; Cadierno, V.; Pizzano, A. ACS Catal. 2014, 4, 4398. |
| [2] | (b) Lindsay, V. N. G.; Murphy, R. A.; Sarpong, R. Chem. Commun. 2017, 53, 10291. |
| [2] | (c) Schröder, H.; Strohmeier, G. A.; Leypold, M.; Nuijens, T.; Quaedflieg, P. J. L. M.; Breinbauer, R. Adv. Synth. Catal. 2013, 355, 1799. |
| [2] | (d) Xie, L.; Ma, H.; Li, J.; Yu, Y.; Qin, Z.; Fu, B. Org. Chem. Front. 2017, 4, 1858. |
| [2] | (e) Kraus, G. A.; Wang, S. RSC Adv. 2017, 7, 56760. |
| [2] | (f) Liu, Q.; Lv, Y.; Liu, R.; Zhao, X.; Wang, J.; Wei, W. Chin. Chem. Lett. 2021, 32, 136. |
| [3] | (a) Pfennig, T.; Carraher, J. M.; Chemburkar, A.; Johnson, R. L.; Anderson, A. T.; Tessonnier, J.-P.; Neurock, M.; Shanks, B. H. Green Chem. 2017, 19, 4879. |
| [3] | (b) Kotek, V.; Dvořáková, H.; Tobrman, T. Org. Lett. 2015, 17, 608. |
| [3] | (c) Xu, X.-H.; Wang, X.; Liu, G.-K.; Tokunaga, E.; Shibata, N. Org. Lett. 2012, 14, 2544. |
| [3] | (d) Xie, L.; Zhen, X.; Huang, S.; Su, X.; Lin, M.; Li, Y. Green Chem. 2017, 19, 3530. |
| [4] | (a) Florentino, L.; Aznar, F.; Valdés, C. Org. Lett. 2012, 14, 2323. |
| [4] | (b) Gøgsig, T. M.; Lindhardt, A. T.; Skrydstrup, T. Org. Lett. 2009, 11, 4886. |
| [4] | (c) Gui, Y.-Y.; Liao, L.-L.; Sun, L.; Zhang, Z.; Ye, J.-H.; Shen, G.; Lu, Z.-P.; Zhou, W.-J.; Yu, D.-G. Chem. Commun. 2017, 53, 1192. |
| [4] | (d) Liao, L.-L.; Gui, Y.-Y.; Zhang, X.-B.; Shen, G.; Liu, H.-D.; Zhou, W.-J.; Li, J.; Yu, D.-G. Org. Lett. 2017, 19, 3735. |
| [4] | (e) Wu, Y.; Fu, W. C.; Chiang, C.-W.; Choy, P. Y.; Kwong, F. Y.; Lei, A. Chem. Commun. 2017, 53, 952. |
| [5] | (a) Ashida, Y.; Sato, Y.; Suzuki, T.; Ueno, K.; Kai, K.; Nakatsuji, H.; Tanabe, Y. Chem.-Eur. J. 2015, 21, 5934. |
| [5] | (b) Molinaro, C.; Scott, J. P.; Shevlin, M.; Wise, C.; Ménard, A.; Gibb, A.; Junker, E. M.; Lieberman, D. J. Am. Chem. Soc. 2015, 137, 999. |
| [5] | (c) Wong, P. Y.; Chow, W. K.; Chung, K. H.; So, C. M.; Lau, C. P.; Kwong, F. Y. Chem. Commun. 2011, 47, 8328. |
| [6] | (a) Li, H.; Mazet, C. J. Am. Chem. Soc. 2015, 137, 10720. |
| [6] | (b) Nakatsuji, H.; Ueno, K.; Misaki, T.; Tanabe, Y. Org. Lett. 2008, 10, 2131. |
| [7] | Steinhuebel, D.; Baxter, J. M.; Palucki, M.; Davies, I. W. J. Org. Chem. 2005, 70, 10124. |
| [8] | Limmert, M. E.; Roy, A. H.; Hartwig, J. F. J. Org. Chem. 2005, 70, 9364. |
| [9] | Klapars, A.; Campos, K. R.; Chen, C.-Y.; Volante, R. P. Org. Lett. 2005, 7, 1185. |
| [10] | Bogolubsky, A. V.; Moroz, Y. S.; Mykhailiuk, P. K.; Pipko, S. E.; Konovets, A. I.; Sadkova, I. V.; Tolmachev, A. ACS Comb. Sci. 2014, 16, 192. |
| [11] | Lin, M.; Luo, J.; Xie, Y.; Du, G.; Cai, Z.; Dai, B.; He, L. ACS Catal. 2023, 13, 14503. |
| [12] | Fu, Z.; Yang, Z.; Sun, L.; Yin, J.; Yi, X.; Cai, H.; Lei, A. Chin. J. Org. Chem. 2022, 42, 600. (in Chinese) |
| [12] | (付拯江, 杨振江, 孙丽, 尹健, 伊学政, 蔡琥, 雷爱文, 有机化学, 2022, 42, 600.) |
| [13] | He, X.; Wu, Y.; Zuo, Y.; Xie, M.; Li, R.; Shang, Y. Synth. Commun. 2019, 49, 959. |
| [14] | Leng, J.; Qin, H.-L. Org. Biomol. Chem. 2019, 17, 5001. |
| [15] | Li, Q.; Zhu, H.; Liu, Y.; Yang, L.; Fan, Q.; Xie, Z.; Le, Z.-G. RSC Adv. 2022, 12, 2736. |
| [16] | Shi, S.-H.; Wei, J.; Liang, C.-M.; Bai, H.; Zhu, H.-T.; Zhang, Y.; Fu, F. Chem. Commun. 2022, 58, 12357. |
| [17] | Shi, S.-H.; Yao, Y.-F.; He, J.; Li, H.-Y.; Han, S.-J.; Zhang, L.-L.; Zhao, Y. Org. Biomol. Chem. 2023, 21, 1903. |
| [18] | (a) Brogden, R. N. Drugs 1986, 32, 60. |
| [18] | (b) Varvounis, G. Adv. Heterocycl. Chem. 2009, 98, 143. |
| [18] | (c) Schmidt, A.; Dreger, A. Curr. Org. Chem. 2011, 15, 1423. |
| [18] | (d) Fustero, S.; Sánchez-Roselló, M.; Barrio, P.; Simón-Fuentes, A. Chem. Rev. 2011, 111, 6984. |
| [18] | (e) Fu, H.-B.; Yao, J.-N. J. Am. Chem. Soc. 2001, 123, 1434. |
| [18] | (f) Zhou, H.; Wei, Z.; Zhang, J.-L.; Yang, H.-M.; Xia, C.-G.; Jiang, G.-X. Angew. Chem., Int. Ed. 2017, 56, 1077. |
| [18] | (e) Zhang, H.-F.; Ye, Z.-Q.; Zhao, G. Chin. Chem. Lett. 2014, 25, 535. |
| [18] | (f) Ma, J.; Yang, J.; Yan, K.; Luo, B.; Huang, K.; Wu, Z.; Zhou, Y.; Zhu, S.; Zhao, X.-E.; Wen, J. SynOpen 2023, 7, 272. |
| [18] | (g) Carceller‐Ferrer, L.; Blay, G.; Pedro, J. R.; Vila, C. Synthesis 2021, 53, 215. |
| [18] | (h) Yang, L.; Qin, T.; Liu, B. Synlett 2023, 34, 2336. |
| [19] | Ansari, A.; Ali, A.; Asif, M.; Shamsuzzaman New J. Chem. (a) Ansari, A.; Ali, A.; Asif, M.; Shamsuzzaman New J. Chem. 2017, 41, 16. |
| [19] | (b) Katritzky, A. R.; Rees, C. W. Comprehensive Heterocyclic Chemistry, Pergamon Press, Oxford, 1984, p. 167. |
| [19] | (c) Katritzky, A. R.; Rees, C. W.; Scriven, E. F. V. Comprehensive Heterocyclic Chemistry, Pergamon Press, Oxford, 1996, p. 1. |
| [19] | (d) Stanovnik, B.; Svete, J. Pyrazoles in Science of Synthesis: Houben-Weyl Methods of Organic Transformations, Georg Thieme, Stuttgart, Germany, 2002, p. 15. |
| [19] | (e) Katritzky, A. R.; Ramsden, C. A.; Scriven, E. F. V.; Taylor, R. J. K. Comprehensive Heterocyclic Chemistry III, Elsevier, Oxford, 2008, p. 1. |
| [20] | (a) Knorr, L. Ber. Dtsch. Chem. Ges. 1883, 16, 2597. |
| [20] | (b) Mariappan, G.; Saha, B. P.; Sutharson, L.; Singh, A.; Pandey, L.; Kumar, D. J. Pharm. Res. 2010, 3, 2856. |
| [20] | (c) Hamama, W. S.; El-Gohary, H. G.; Kuhnert, N.; Zoorob, H. H. Curr. Org. Chem. 2012, 16, 373. |
| [21] | Li, D.; Hu, W. Asian J. Org. Chem. 2023, 12, e202300043. |
/
| 〈 |
|
〉 |