研究论文

钯催化SO2插入的炔丙基乙酸酯和碘代芳烃的还原偶联反应

  • 张倩 ,
  • 应垚璐 ,
  • 张泓银 ,
  • 徐林博 ,
  • 林新奎 ,
  • 黄晓雷
展开
  • 浙江师范大学化学与材料科学学院 先进催化材料教育部重点实验室 浙江金华 321004

收稿日期: 2023-12-09

  修回日期: 2024-01-23

  网络出版日期: 2024-02-20

基金资助

国家自然科学基金(22101259); 浙江省自然科学基金(LQ22B020002)

Palladium-Catalyzed Reductive Cross-Coupling of Propargyl Acetates with Aryl Iodides Involving the Insertion of SO2

  • Qian Zhang ,
  • Yaolu Ying ,
  • Hongyin Zhang ,
  • Linbo Xu ,
  • Xinkui Lin ,
  • Xiaolei Huang
Expand
  • Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, Zhejiang 321004

Received date: 2023-12-09

  Revised date: 2024-01-23

  Online published: 2024-02-20

Supported by

National Natural Science Foundation of China(22101259); Zhejiang Provincial Natural Science Foundation(LQ22B020002)

摘要

报道了一种高效的钯催化二氧化硫插入的炔丙基乙酸酯和碘代芳烃的还原偶联反应. 该反应使用双(二氧化硫)-1,4-二氮杂双环[2.2.2]辛烷加合物(DABSO)作为气态二氧化硫的替代试剂、还原性锰粉作为还原剂, 具有反应条件温和、底物范围广、官能团耐受性好等特点.

本文引用格式

张倩 , 应垚璐 , 张泓银 , 徐林博 , 林新奎 , 黄晓雷 . 钯催化SO2插入的炔丙基乙酸酯和碘代芳烃的还原偶联反应[J]. 有机化学, 2024 , 44(6) : 2033 -2040 . DOI: 10.6023/cjoc202312010

Abstract

An efficient palladium-catalyzed reductive cross-coupling of propargyl acetates with aryl iodides involving the insertion of sulfur dioxide has been reported. This method employs 1,4-diazoniabicyclo[2.2.2]octane-1,4-disulfinate (DABSO) as SO2 surrogate, reductive manganese powder as reductant, and features mild reaction conditions, broad substrate scope and good functional group tolerance.

参考文献

[1]
Cinar, M. E.; Ozturk, T. Chem. Rev. 2015, 115, 3036.
[2]
Prinsep, M. R.; Blunt, J. W.; Munro, M. H. G. J. Nat. Prod. 1991, 54, 1068.
[3]
Meadows, D. C.; Gervay-Hague, J. Med. Res. Rev. 2006, 26, 793.
[4]
Li, P.; Wang, L.; Wang, X. J. Heterocycl. Chem. 2021, 58, 28.
[5]
(a) Engberts, J. B. F. N. In The Chemistry of Sulphones and Sulphoxides, vol. 107, Eds: Patai, S.; Rappoport, Z.; Stirling, C., John Wiley and Sons, Chichester, 1988, 684.
[5]
(b) Bäckvall, J.-E.; Chinchilla, R.; Nájera, C.; Yus, M. Chem. Rev. 1998, 98, 2291.
[6]
Dong, D.-Q.; Han, Q.-Q.; Yang, S.-H.; Song, J.-C.; Li, N.; Wang, Z.-L.; Xu, X.-M. ChemistrySelect 2020, 5, 13103.
[7]
Lattanzi, A. in Comprehensive Organic Synthesis II, vol.7, Eds.: Knochel, P.; Molander, G. A., Elsevier, 2014, pp. 837-871.
[8]
For selected reviews: (a) Qiu, G.-S.; Lai, L.-F.; Cheng, J.; Wu, J. Chem. Commun. 2018, 54, 10405.
[8]
(b) Qiu, G.-S.; Zhou, K.-D.; Gao, L.; Wu, J. Org. Chem. Front. 2018, 5, 691.
[8]
(c) Ye, S.; Li, X.; Xie, W.; Wu, J. Eur. J. Org. Chem. 2020, 2020, 1274.
[8]
(d) Zeng, D.; Wang, M.; Deng, W.-P.; Jiang, X.-F. Org. Chem. Front. 2020, 7, 3956.
[8]
(e) Joseph, D.; Idris, M. A.; Chen, J.; Lee, S. ACS Catal. 2021, 11, 4169.
[8]
(f) Wang, M.; Jiang, X. Chem. Rec. 2021, 21, 3338.
[8]
(g) de Souza, E. L. S.; Oliveira, C. C. Eur. J. Org. Chem. 2023, 26, e202300073.
[9]
For selected examples: (a) Johnson, M. W.; Bagley, S. W.; Mankad, N. P.; Bergman, R. G.; Mascitti, V.; Toste, F. D. Angew. Chem., Int. Ed. 2014, 53, 4404.
[9]
(b) Shavnya, A.; Hesp, K. D.; Mascitti, V.; Smith, A. C. Angew. Chem., Int. Ed. 2015, 54, 13571.
[9]
(c) Zheng, D.; Chen, M.; Yao, L.; Wu, J. Org. Chem. Front. 2016, 3, 985.
[9]
(d) Chen, Y.; Willis, M. C. Chem. Sci. 2017, 8, 3249.
[9]
(e) Zhu, H.; Shen, Y.; Deng, Q.; Chen, J.; Tu, T. ACS Catal. 2017, 7, 4655.
[9]
(f) Zhu, H.; Shen, Y.; Deng, Q.; Chen, J.; Tu, T. Chem. Commun. 2017, 53, 12473.
[9]
(g) Adenot, A.; Char, J.; von Wolff, N.; Lefèvre, G.; Anthore- Dalion, L.; Cantat, T. Chem. Commun. 2019, 55, 12924.
[9]
(h) Adenot, A.; Anthore-Dalion, L.; Nicolas, E.; Berthet, J.-C.; Thuéry, P.; Cantat, T. Chem. - Eur. J. 2021, 27, 18047.
[10]
For selected examples: (a) Shavnya, A.; Coffey, S. B.; Smith, A. C.; Mascitti, V. Org. Lett. 2013, 15, 6226.
[10]
(b) Emmett, E. J.; Hayter, B. R.; Willis, M. C. Angew. Chem., Int. Ed. 2013, 52, 12679.
[10]
(c) Emmett, E. J.; Hayter, B. R.; Willis, M. C. Angew. Chem., Int. Ed. 2014, 53, 10204.
[10]
(d) Richards-Taylor, C. S.; Blakemore, D. C.; Willis, M. C. Chem. Sci. 2014, 5, 222.
[10]
(e) Deeming, A. S.; Russell, C. J.; Willis, M. C. Angew. Chem., Int. Ed. 2016, 55, 747.
[10]
(f) Lo, P. K. T.; Chen, Y.; Willis, M. C. ACS Catal. 2019, 9, 10668.
[10]
(g) Bajohr, J.; Böhme, M. D.; Gao, J.; Hahn, F. E.; Lautens, M. Org. Lett. 2022, 24, 3823.
[11]
(a) Meng, Y.; Wang, M.; Jiang, X. Angew. Chem., Int. Ed. 2020, 59, 1346.
[11]
(b) Meng, Y.; Wang, M.; Jiang, X. CCS Chem. 2021, 3, 17.
[12]
Xiong, B.; Zhang, J.; Wang, T.; Zhang, X.; Cheng, G.; Lian, Z. Org. Chem. Front. 2023, 10, 3567.
[13]
Zheng, M.; Xue, W.; Xue, T.; Gong, H. Org. Lett. 2016, 18, 6152.
[14]
(a) Sun, C.-L.; Shi, Z.-J. Chem. Rev. 2014, 114, 9219.
[14]
(b) Ruiz-Castillo, P.; Stephen, L.; Buchwald, S. L. Chem. Rev. 2016, 116, 12564.
[15]
Jiao, Z.; Shi, Q.; Zhou, J. S. Angew. Chem., Int. Ed. 2017, 56, 14567.
文章导航

/