电化学介导的氧化羧化及二氧化碳还原羧化制备羧酸的研究进展
收稿日期: 2023-11-27
修回日期: 2024-01-18
网络出版日期: 2024-02-28
基金资助
国家自然科学基金(22071082)
Research Progress in Preparation of Carboxylic Acids by Electrochemical Mediated Oxidative Carboxylation and Reductive Carboxylation of Carbon Dioxide
Received date: 2023-11-27
Revised date: 2024-01-18
Online published: 2024-02-28
Supported by
National Natural Science Foundation of China(22071082)
吕帅 , 朱钢国 , 姚金忠 , 周宏伟 . 电化学介导的氧化羧化及二氧化碳还原羧化制备羧酸的研究进展[J]. 有机化学, 2024 , 44(3) : 780 -808 . DOI: 10.6023/cjoc202311030
As a class of common and important compounds, carboxylic acids are widely used in areas of medicine, pesticides and polymers. Therefore, development of facile and efficient methods for the synthesis of carboxylic acids is of great significance. Electrochemical synthesis of carboxylic acids has attracted widespread attentions due to its environmentally friendly and mild conditions. This article mainly reviews the relevant research in electrochemical synthesis of carboxylic acids in recent years from two aspects: electrochemical oxidation for carboxylation and electrochemical reduction of carbon dioxide for carboxylation.
| [1] | Leech M. C.; Lam K. Acc. Chem. Res. 2020, 53, 121. |
| [2] | Haushalter R. W.; Phelan R. M.; Hoh K. M.; Su C.; Wang G.; Baidoo E. E. K.; Keasling J. D. J. Am. Chem. Soc. 2017, 139, 4615. |
| [3] | Kumar A.; Yadav P. K.; Singh S.; Singh A. Env. Pollut. Bioavail. 2023, 35, 2242701. |
| [4] | Wang J.-K.; Zhou Q.; Wang J.-P.; Yang S.; Li G. L. Colloids Surf., A 2019, 569, 52. |
| [5] | Moon Y.-S.; Kim H.-M.; Chun H. S.; Lee S.-E. Food Control 2018, 88, 207. |
| [6] | Zimmerman J. B.; Anastas P. T.; Erythropel H. C.; Leitner W. Science 2020, 367, 397. |
| [7] | Lodh J.; Paul S.; Sun H.; Song L. Y.; Sch?fberger W.; Roy S. Front. Chem. 2023, 10. |
| [8] | Yan M.; Kawamata Y.; Baran P. S. Chem. Rev. 2017, 117, 13230. |
| [9] | Kingston C.; Palkowitz M. D.; Takahira Y.; Vantourout J. C.; Peters B. K.; Kawamata Y.; Baran P. S. Acc. Chem. Res. 2020, 53, 72. |
| [10] | Leech M. C.; Lam K. Nat. Rev. Chem. 2022, 6, 275. |
| [11] | Elgrishi N.; Rountree K. J.; McCarthy B. D.; Rountree E. S.; Eisenhart T. T.; Dempsey J. L. J. Chem. Educ. 2018, 95, 197. |
| [12] | Heard D. M.; Lennox A. J. J. Angew. Chem., Int. Ed. 2020, 59, 18866. |
| [13] | Little R. D. J. Org. Chem. 2020, 85, 13375. |
| [14] | Schotten C.; Nicholls T. P.; Bourne R. A.; Kapur N.; Nguyen B. N.; Willans C. E. Green Chem. 2020, 22, 3358. |
| [15] | Hatch C. E.; Chain W. J. ChemElectroChem 2023, 10, e202300140. |
| [16] | Senboku H. Chem. Rec. 2021, 21, 2354. |
| [17] | Wang S. Y.; Feng T.; Wang Y. W.; Qiu Y. A. Chem.-Asian J. 2022, 17, e202200543. |
| [18] | Liu X.-F.; Zhang K.; Tao L.; Lu X.-B.; Zhang W.-Z. Green Chem. Eng. 2022, 3, 125. |
| [19] | Jud W.; Salazar C. A.; Imbrogno J.; Verghese J.; Guinness S. M.; Desrosiers J.-N.; Kappe C. O.; Cantillo D. Org. Process Res. Dev. 2022, 26, 1486. |
| [20] | Zhou H.; Li Z.; Xu S.-M.; Lu L.; Xu M.; Ji K.; Ge R.; Yan Y.; Ma L.; Kong X.; Zheng L.; Duan H. Angew. Chem., Int. Ed. 2021, 60, 8976. |
| [21] | Liu S.; Dou S.; Meng J.; Liu Y.; Liu Y.; Yu H. Appl. Catal. B 2023, 331, 122709. |
| [22] | Goloviznina K.; Salanne M. J. Phys. Chem. B 2023, 127, 742. |
| [23] | Rafiee M.; Konz Z. M.; Graaf M. D.; Koolman H. F.; Stahl S. S. ACS Catal. 2018, 8, 6738. |
| [24] | Rafiee M.; Alherech M.; Karlen S. D.; Stahl S. S. J. Am. Chem. Soc. 2019, 141, 15266. |
| [25] | Fisher T. J.; Dussault P. H. Tetrahedron 2017, 73, 4233. |
| [26] | Chan A. P. Y.; Sergeev A. G. Coord. Chem. Rev. 2020, 413, 213213. |
| [27] | B?umer U. S.; Sch?fer H. J. Electrochim. Acta 2003, 48, 489. |
| [28] | B?umer U. S.; Sch?fer H. J. J. Appl. Electrochem. 2005, 35, 1283. |
| [29] | Nikl J.; Hofman K.; Mossazghi S.; M?ller I. C.; Mondeshki D.; Weinelt F.; Baumann F.-E.; Waldvogel S. R. Nat. Commun. 2023, 14, 4565. |
| [30] | Feng Q.; Wang Y.; Zheng B.; Huang S. Org. Lett. 2023, 25, 293. |
| [31] | Mena S.; Peral J.; Guirado G. Curr. Opin. Electrochem. 2023, 42, 101392. |
| [32] | Yu Z.; Shi M. Chem. Commun. 2022, 58, 13539. |
| [33] | Zhao Y.; Guo X.; Li S.; Fan Y.; Ji G.-C.; Jiang M.; Yang Y.; Jiang Y.-Y. Angew. Chem., Int. Ed. 2022, 61, e202213636. |
| [34] | Yao H.; Wang M.-Y.; Yue C.; Feng B.; Ji W.; Qian C.; Wang S.; Zhang S.; Ma X. Trans. Tianjin Univ. 2023, 29, 254. |
| [35] | Senboku H. Chem. Rec. 2021, 21, 2354. |
| [36] | Ran C.-K.; Liao L.-L.; Gao T.-Y.; Gui Y.-Y.; Yu D.-G. Curr. Opin. Green Sust. Chem. 2021, 32, 100525. |
| [37] | Chantarojsiri T.; Soisuwan T.; Kongkiatkrai P. Chin. J. Catal. 2022, 43, 3046. |
| [38] | Senboku H.; Katayama A. Curr. Opin. Green Sust. Chem. 2017, 3, 50. |
| [39] | Mao B.; Wei J.-S.; Shi M. Chem. Commun. 2022, 58, 9312. |
| [40] | Huang W.; Lin J.; Deng F.; Zhong H. Asian J. Org. Chem. 2022, 11, e202200220. |
| [41] | Zhang Z.; Ye J.-H.; Ju T.; Liao L.-L.; Huang H.; Gui Y.-Y.; Zhou W.-J.; Yu D.-G. ACS Catal. 2020, 10, 10871. |
| [42] | Fan Z.; Zhang Z.; Xi C. ChemSusChem 2020, 13, 6201. |
| [43] | Saini S.; Prajapati P. K.; Jain S. L. Catal. Rev. 2022, 64, 631. |
| [44] | Wang S.; Du G.; Xi C. Org. Biomol. Chem. 2016, 14, 3666. |
| [45] | Zhang L.; Hou Z. Curr. Opin. Green Sust. Chem. 2017, 3, 17. |
| [46] | Tortajada A.; Juliá-Hernández F.; B?rjesson M.; Moragas T.; Martin R. Angew. Chem., Int. Ed. 2018, 57, 15948. |
| [47] | Xie S.-L.; Gao X.-T.; Wu H.-H.; Zhou F.; Zhou J. Org. Lett. 2020, 22, 8424. |
| [48] | Zhao B.; Pan Z.; Pan J.; Deng H.; Bu X.; Ma M.; Xue F. Green Chem. 2023, 25, 3095. |
| [49] | Mondal S.; Sarkar S.; Wang J. W.; Meanwell M. W. Green Chem. 2023, 25, 9075. |
| [50] | Zhong J.-S.; Yang Z.-X.; Ding C.-L.; Huang Y.-F.; Zhao Y.; Yan H.; Ye K.-Y. J. Org. Chem. 2021, 86, 16162. |
| [51] | Yang Z.-X.; Lai L.; Chen J.; Yan H.; Ye K.-Y.; Chen F.-E. Chin. Chem. Lett. 2023, 34, 107956. |
| [52] | Liao L.-L.; Wang Z.-H.; Cao K.-G.; Sun G.-Q.; Zhang W.; Ran C.-K.; Li Y.; Chen L.; Cao G.-M.; Yu D.-G. J. Am. Chem. Soc. 2022, 144, 2062. |
| [53] | Zhang W.; Liao L.-L.; Li L.; Liu Y.; Dai L.-F.; Sun G.-Q.; Ran C.-K.; Ye J.-H.; Lan Y.; Yu D.-G. Angew. Chem., Int. Ed. 2023, 62, e202301892. |
| [54] | Zhang W.; Lin S. J. Am. Chem. Soc. 2020, 142, 20661. |
| [55] | You Y.; Kanna W.; Takano H.; Hayashi H.; Maeda S.; Mita T. J. Am. Chem. Soc. 2022, 144, 3685. |
| [56] | Qin J.-H.; Xiong Z.-Q.; Cheng C.; Hu M.; Li J.-H. Org. Lett. 2023, 25, 9176. |
| [57] | Zhang K.; Ren B.-H.; Liu X.-F.; Wang L.-L.; Zhang M.; Ren W.-M.; Lu X.-B.; Zhang W.-Z. Angew. Chem., Int. Ed. 2022, 61, e202207660. |
| [58] | Wang Y.; Tang S.; Yang G.; Wang S.; Ma D.; Qiu Y. Angew. Chem., Int. Ed. 2022, 61, e202207746. |
| [59] | Yang G.; Wang Y.; Qiu Y. Chem. Eur. J. 2023, 29, e202300959. |
| [60] | Liu X.-F.; Zhang K.; Wang L.-L.; Wang H.; Huang J.; Zhang X.-T.; Lu X.-B.; Zhang W.-Z. J. Org. Chem. 2023, 88, 5212. |
| [61] | Yan Y.; Li H.; Xie F.; Lu W.; Zhang Z.; Jing L.; Han P. Adv. Synth. Catal. 2023, 365, 3830. |
| [62] | Alkayal A.; Tabas V.; Montanaro S.; Wright I. A.; Malkov A. V.; Buckley B. R. J. Am. Chem. Soc. 2020, 142, 1780. |
| [63] | Sheta A. M.; Mashaly M. A.; Said S. B.; Elmorsy S. S.; Malkov A. V.; Buckley B. R. Chem. Sci. 2020, 11, 9109. |
| [64] | Sheta A. M.; Alkayal A.; Mashaly M. A.; Said S. B.; Elmorsy S. S.; Malkov A. V.; Buckley B. R. Angew. Chem., Int. Ed. 2021, 60, 21832. |
| [65] | Yang D.-T.; Zhu M.; Schiffer Z. J.; Williams K.; Song X.; Liu X.; Manthiram K. ACS Catal. 2019, 9, 4699. |
| [66] | Corbin N.; Yang D.-T.; Lazouski N.; Steinberg K.; Manthiram K. Chem. Sci. 2021, 12, 12365. |
| [67] | Gao X.-T.; Zhang Z.; Wang X.; Tian J.-S.; Xie S.-L.; Zhou F.; Zhou J. Chem. Sci. 2020, 11, 10414. |
| [68] | Seidler J.; Roth A.; Vieira L.; Waldvogel S. R. ACS Sustain. Chem. Eng. 2023, 11, 390. |
| [69] | Zhang K.; Liu X.-F.; Zhang W.-Z.; Ren W.-M.; Lu X.-B. Org. Lett. 2022, 24, 3565. |
| [70] | Zhao Z.; Liu Y.; Wang S.; Tang S.; Ma D.; Zhu Z.; Guo C.; Qiu Y. Angew. Chem., Int. Ed. 2023, 62, e202214710. |
| [71] | Sun G.-Q.; Yu P.; Zhang W.; Zhang W.; Wang Y.; Liao L.-L.; Zhang Z.; Li L.; Lu Z.; Yu D.-G.; Lin S. Nature 2023, 615, 67. |
| [72] | Zhang X.; Li Z. H.; Chen H. S.; Shen C. R.; Wu H. H.; Dong K. W. ChemSusChem 2023, 16, e202300807. |
| [73] | Bazzi S.; Le Duc G.; Schulz E.; Gosmini C.; Mellah M. Org. Biomol. Chem. 2019, 17, 8546. |
| [74] | Bazzi S.; Schulz E.; Mellah M. Org. Lett. 2019, 21, 10033. |
| [75] | Bazzi S.; Hu L.; Schulz E.; Mellah M. Organometallics 2023, 42, 1425-1431. |
| [76] | Jiao K.-J.; Li Z.-M.; Xu X.-T.; Zhang L.-P.; Li Y.-Q.; Zhang K.; Mei T.-S. Org. Chem. Front. 2018, 5, 2244. |
| [77] | Ang N. W. J.; Oliveira J. C. A.; Ackermann L. Angew. Chem., Int. Ed. 2020, 59, 12842. |
| [78] | Wu L.-X.; Deng F.-J.; Wu L.; Wang H.; Chen T.-J.; Guan Y.-B.; Lu J.-X. New J. Chem. 2021, 45, 13137. |
| [79] | Sun G.-Q.; Zhang W.; Liao L.-L.; Li L.; Nie Z.-H.; Wu J.-G.; Zhang Z.; Yu D.-G. Nat. Commun. 2021, 12, 7086. |
| [80] | Wang Y. W.; Zhao Z. W.; Pan D.; Wang S. Y.; Jia K. P.; Ma D. K.; Yang G. Q.; Xue X. S.; Qiu Y. A. Angew. Chem., Int. Ed. 2022, 61, e202210201. |
| [81] | Rawat V. K.; Hayashi H.; Katsuyama H.; Mangaonkar S. R.; Mita T. Org. Lett. 2023, 25, 4231 |
/
| 〈 |
|
〉 |