研究论文

二苯甲酮腙电氧化制备二苯重氮甲烷的研究

  • 韩璐瑶 ,
  • 胡硕真 ,
  • 郭庆春 ,
  • 郭红永 ,
  • 高照群 ,
  • 许颖 ,
  • 张新胜
展开
  • a 华东理工大学化工学院 上海 200237
    b 河北兰升生物科技有限公司 河北石家庄 052260

收稿日期: 2023-12-06

  修回日期: 2024-02-23

  网络出版日期: 2024-03-05

Study on Electrooxidation of Benzophenone Hydrazone to Diphenyldiazomethane

  • Luyao Han ,
  • Shuozhen Hu ,
  • Qingchun Guo ,
  • Hongyong Guo ,
  • Zhaoqun Gao ,
  • Ying Xu ,
  • Xinsheng Zhang
Expand
  • a School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237
    b Hebei Lansheng Biotech Co., Ltd., Shijiazhuang, Hebei 052260

Received date: 2023-12-06

  Revised date: 2024-02-23

  Online published: 2024-03-05

摘要

研究了二苯甲酮腙电催化氧化合成二苯重氮甲烷. 针对二苯重氮甲烷的不稳定特性, 通过非均相电解体系设计, 优选卤化合物、电解质种类、反应溶剂的极性以及电极材料、控制电流密度和反应温度等措施, 抑制过氧化副产物二苯甲酮、水解副产物二苯甲醇及偶联副产物二苯甲酮吖嗪的生成, 以74%的高收率获得二苯重氮甲烷. 此外, 还初步探究了二苯甲酮腙电氧化机理.

本文引用格式

韩璐瑶 , 胡硕真 , 郭庆春 , 郭红永 , 高照群 , 许颖 , 张新胜 . 二苯甲酮腙电氧化制备二苯重氮甲烷的研究[J]. 有机化学, 2024 , 44(3) : 951 -965 . DOI: 10.6023/cjoc202312005

Abstract

The electrocatalytic oxidation of benzophenone hydrazone for the synthesis of diphenyldiazomethane was investigated. To address the instability of diphenyldiazomethane, a heterogeneous electrolytic system was designed, optimizing the halogen compound, electrolyte type, solvent polarity, electrode material, control current density and reaction temperature. These measures effectively suppressed the formation of by-products such as benzylidene acetone peroxide, diphenylmethanol hydrolysis, and diphenylmethanequinone coupling, leading to a high yield of 74% for diphenyldiazomethane. Additionally, preliminary investigations were conducted on the electrochemical oxidation mechanism of benzophenone hydrazone.

参考文献

[1]
Amy K. F. Chem. Sci. 2015, 6, 752.
[2]
Mix K. A.; Aronoff M. R.; Raines R. T. ACS Chem. Biol. 2016, 11, 3233.
[3]
Fulton J. R.; Aggarwal V. K.; de Vicente J. Eur. J. Org. Chem. 2005, 2005, 1479.
[4]
David T. E. US 4092306, 1978.
[5]
Miller J. J. Org. Chem. 1959, 24, 560.
[6]
Holton T. L.; Schechter H. J. Org. Chem. 1995, 60, 4725.
[7]
Kawahara I.US 5587464, 1996.
[8]
Perusquía-Hernández C.; Lara-Issasi G. R.; Frontana-Uribe B. A. Tetrahedron Lett. 2013, 54, 3302.
[9]
Guo H.; Niu D. F.; Hu S. Z. J. Electrochem. 2021, 27, 498. (in Chinese)
[9]
( 郭浩, 钮东方, 胡硕真, 电化学, 2021, 27, 498.)
[10]
Mao L.; Niu D. F.; Hu S. Z. J. Electrochem. 2022, 28, 2107061. (in Chinese)
[10]
( 毛麟, 钮东方, 胡硕真, 电化学, 2022, 28, 2107061.)
[11]
Chiba T. J. Org. Chem. 1983, 48, 2968.
[12]
Okimoto M.; Numata K.; Tomozawa K. Aust. J. Chem. 2005, 58, 560.
[13]
Tanbouza N. Org. Lett. 2022, 24, 4665.
[14]
Liu Z.; Sivaguru P.; Zanoni G. Acc. Chem. Res. 2022, 55, 1763.
[15]
O’Connor, N. R.; Bolgar, P.; Stoltz, B. M. Tetrahedron Lett. 2016, 57, 849.
[16]
Bartlett P. D.; Traylor T. G. J. Am. Chem. Soc. 1962, 84, 3408.
[17]
Yu Y.; Sha Q.; Cui H. Org. Lett. 2018, 20, 776.
[18]
Reader A. M.; Bailey P. S.; White H. M. J. Org. Chem. 1965, 30, 784.
[19]
Nojima T.; Ishiguro K.; Sawaki Y. J. Org. Chem. 1997, 62, 6911.
[20]
Sawaki Y.; Ishiguro K. Tetrahedron Lett. 1984, 25, 1487.
[21]
Adam W.; Zhao C. G.; Saha-Moller C. R.; Jakka K. Oxidation of Organic Compounds by Dioxiranes, John Wiley & Sons., Canada, 2009, pp. 311-662.
[22]
Chapman O. L.; Hess T. C.; J. Am. Chem. Soc. 1984, 106, 1842.
[23]
Ishiguro K.; Hirano Y.; Sawaki Y. J. Org. Chem. 1988, 53, 5397.
[24]
Dahn H.; Ballenegger M. Helv. Chim. Acta 1969, 52, 2417.
[25]
Empel C.; Pei C.; He F. Chem.-Eur. J. 2022, 28, e202104397.
[26]
Nozaki H.; Takaya H.; Moriuti S. Tetrahedron 1968, 24, 3655.
[27]
Abelt C. J.; Pleier J. M. J. Am. Chem. Soc. 1989, 111, 1795.
[28]
Quiclet-Sire B.; Zard S. Z. Chem. Commun. 2006, 1831.
[29]
Barton D. H. R.; O'brien R. E.; Sternhell S. J. Chem. Soc. 1962, 88, 470.
[30]
Overberger C. G.; Anselme J. P. Org. Chem. 1964, 29, 1188.
[31]
Liu K.; Song C.; Lei A. Org. Biomol. Chem. 2018, 16, 2375.
[32]
Lian F.; Xu K.; Zeng C. Chem. Rec. 2021, 21, 2290.
[33]
Tang H. T.; Jia J. S.; Pan Y. M. Org. Biomol. Chem. 2020, 18, 5315.
[34]
Dou G. Y.; Jiang Y. Y.; Xu K. Org. Chem. Front. 2019, 6, 2392.
[35]
Wang Z. Q.; Meng X. J.; Li Q. Y. Adv. Synth. Catal. 2018, 360, 4043.
[36]
Mo Z. Y.; Swaroop T. P.; Tong W. Green Chem. 2018, 20, 4428.
[37]
Zhang Y. Z.; Mo Z. Y.; Wang H. S. Green Chem. 2019, 21, 3807.
[38]
Meng X. J.; Zhong P. F.; Wang Y. M. Adv. Synth. Catal. 2020, 362, 506.
[39]
He M. X.; Mo Z. Y.; Wang Z. Q. Org. Lett. 2019, 22, 724.
[40]
Javed M. I.; Brewer M. Org. Lett. 2007, 9, 1789.
[41]
Cheng N. L. Solvent Handbook, Ed.: Gu, N.-J., Chemical Industry Press, Beijing, 2015, p. 1112. (in Chinese)
[41]
( 程能林, 溶剂手册, 编辑: 顾南君, 化学工业出版社, 北京, 2015, p. 1112.)
[42]
Fang G. Y. US 20160060223, 2016.
[43]
Iwamoto R. T. Anal. Chem. 1959, 31, 955.
[44]
Mulina O. M. Org. Lett. 2022, 22, 1818.
[45]
Mills A.; Holland C. J. Chem. Res., Synop. 1997, 368.
[46]
Furrow M. E.; Myers A. G. J. Am. Chem. Soc. 2004, 126, 12222.
[47]
Liu W.; Twilton J.; Wei B. ACS Catal. 2021, 11, 2676.
[48]
Ryzhakov A. V.; Andreev V. P. Russ. J. Org. Chem. 2016, 52, 513.
文章导航

/