研究论文

镍催化1,6-烯炔与芳基卤化物的反式还原芳基化环化

  • 邢运新 ,
  • 闫登鸿 ,
  • 温顺 ,
  • 卜洁 ,
  • 沈坤
展开
  • 武汉大学药学院 武汉 430071

收稿日期: 2024-01-01

  修回日期: 2024-02-07

  网络出版日期: 2024-03-05

基金资助

国家自然科学基金(21901192); 国家自然科学基金(22271225); 湖北省自然科学基金(2019CFB12); 湖北省自然科学基金(2022CFB221)

Nickel-Catalyzed Reductive anti-Arylative Cyclization of 1,6-Enynes with Aryl Halides

  • Yunxin Xing ,
  • Denghong Yan ,
  • Shun Wen ,
  • Jie Bu ,
  • Kun Shen
Expand
  • School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071

Received date: 2024-01-01

  Revised date: 2024-02-07

  Online published: 2024-03-05

Supported by

National Natural Science Foundation of China(21901192); National Natural Science Foundation of China(22271225); Natural Science Foundation of Hubei Province(2019CFB12); Natural Science Foundation of Hubei Province(2022CFB221)

摘要

发展了一种镍催化1,6-烯炔与芳基卤化物的反式还原芳基化环化反应. 该反应避免了化学计量有机金属试剂的使用, 而且条件温和、官能团兼容性好、底物范围广. 许多天然产物和生物活性化合物中广泛存在各种碳环和杂环骨架, 该方法为这些骨架的合成提供了一个高效的平台.

本文引用格式

邢运新 , 闫登鸿 , 温顺 , 卜洁 , 沈坤 . 镍催化1,6-烯炔与芳基卤化物的反式还原芳基化环化[J]. 有机化学, 2024 , 44(6) : 1938 -1948 . DOI: 10.6023/cjoc202401001

Abstract

A nickel-catalyzed reductive trans-arylative cyclization of 1,6-enynes with aryl halides has been developed. This transformation avoids the use of stoichiometric organometallic reagents and features mild conditions, good functional group tolerance and broad substrate scope. This method serves as an efficient platform for the synthesis of various carbo- and heterocycles, which are abundant in many natural products and biologically active compounds.

参考文献

[1]
For selected reviews on transition metal-catalyzed tandem cyclization reactions, see: (a) Miura, T.; Murakami, M. Chem. Commun. 2007, 217.
[1]
(b) Youn, S. W. Eur. J. Org. Chem. 2009, 2597.
[1]
(c) Tian, P; Dong, H.; Lin, Q. ACS Catal. 2012, 2, 95.
[1]
(d) Han, X.; Lu, X. Synlett 2018, 29, 2461.
[1]
(e) Gillbard, S. M.; Lam, H. W. Chem.-Eur. J. 2022, 28, e202104230.
[2]
(a) Ikeda, S.; Cui, D.; Sato, Y. J. Org. Chem. 1994, 59, 6877.
[2]
(b) Cui, D.; Tsuzuki, T.; Miyake, K.; Ikeda, S.; Sato, Y. Tetrahedron 1998, 54, 1063.
[2]
(c) Ikeda, S.; Miyashita, H.; Sato, Y. Organometallics 1998, 17, 4316.
[3]
(a) Zhu, G.; Zhang, Z. Org. Lett. 2003, 5, 3645.
[3]
(b) Zhu, G.; Tong, X.; Cheng, J.; Sun, Y.; Li, D.; Zhang, Z. J. Org. Chem. 2005, 70, 1712.
[4]
(a) Miura, T.; Shimada, M.; Murakami, M. J. Am. Chem. Soc. 2005, 127, 1094.
[4]
(b) Miura, T.; Shimada, M.; Murakami, M. Chem.-Asian J. 2006, 1, 868.
[5]
Shen, K.; Han, X.; Lu, X.; Hu, Z. Tetrahedron Lett. 2017, 58, 3768.
[6]
Yap, C; Lenagh-Snow, G. M. J.; Karad, S. N.; Lewis, W.; Diorazio, L. J.; Lam, H. W. Angew. Chem., Int. Ed. 2017, 56, 8216.
[7]
Wang, K.; Chen, J.; Liu, W.; Kong, W. Angew. Chem., Int. Ed. 2022, 61, e202201574.
[8]
(a) Knappke, C. E. I.; Grupe, S.; G?rtner, D.; Corpet, M.; Gosmini, C.; Jacobi von Wangelin, A. Chem.-Eur. J. 2014, 20, 6828.
[8]
(b) Everson, D. A.; Weix, D. J. J. Org. Chem. 2014, 79, 4793.
[8]
(c) Moragas, T.; Correa, A.; Martin, R. Chem.-Eur. J. 2014, 20, 8242.
[8]
(d) Wang, X.; Dai, Y.; Gong, H. Top. Curr. Chem. 2016, 374, 43.
[8]
(e) Richmond, E.; Moran, J. Synthesis 2018, 50, 499.
[8]
(f) Poremba, K.; Dibrell, S.; Reisman, S. ACS Catal. 2020, 10, 8237.
[8]
(g) Yi, L.; Ji, T.; Chen, K.; Chen, X.; Rueping, M. CCS Chem. 2022, 4, 9.
[8]
(h) Li, T.; Cheng, X.; Lu, J.; Wang, H.; Fang, Q.; Lu, Z. Chin. J. Chem. 2022, 40, 1033.
[8]
(i) Zhang, L.; Du, Q.; Luo, Y.; Wang, Y.; Gao, F.; Ye, Y.; Zhang, W. Chin. J. Chem. 2023, 41, 3003.
[9]
(a) Derosa, J.; Apolinar, O.; Kang, T.; Tran, V. T.; Engle, K. M. Chem. Sci. 2020, 11, 4287.
[9]
(b) Tu, H.-Y.; Zhu, S.; Qing, F.-L.; Chu, L. Synthesis 2020, 52, 1346.
[9]
(c) Zhu, C.; Yue, H.; Chu, L.; Rueping, M. Chem. Sci. 2020, 11, 4051.
[9]
(d) Bottcher, S.; Hutchinson, L.; Wilger, D. Synthesis 2020, 52, 2807.
[9]
(e) Qi, X.; Diao, T. ACS Catal. 2020, 10, 8542.
[9]
(f) Liu, W.; Kong, W. Org. Chem. Front. 2020, 7, 394.
[9]
(g) Zhu, S.; Zhao, X.; Li, H.; Chu, L. Chem. Soc. Rev. 2021, 50, 10836.
[9]
(h) Pan, Q.; Ping, Y.; Kong, W. Acc. Chem. Res. 2023, 56, 515.
[10]
(a) Rayabarapu, D. K.; Cheng, C.-H. Chem. Commun. 2002, 942.
[10]
(b) Rayabarapu, D. K.; Yang, C.-H.; Cheng, C.-H. J. Org. Chem. 2003, 68, 6726.
[10]
(c) Durandetti, M.; Hardou, L.; Clement, M.; Maddaluno, J. Chem. Commun. 2009, 4753.
[10]
(d) Durandetti, M.; Hardou, L.; Lhermet, R.; Rouen, M.; Maddaluno, J. Chem.-Eur. J. 2011, 17, 12773.
[10]
(e) Wang, X.; Liu, Y.; Martin, R. J. Am. Chem. Soc. 2015, 137, 6476.
[10]
(f) García-Domínguez, A.; Li, Z.; Nevado, C. J. Am. Chem. Soc. 2017, 139, 6835.
[10]
(g) Shu, W.; García-Domínguez, A.; Quirós, M. T.; Mondal, R.; Cárdenas, D. J.; Nevado, C. J. Am. Chem. Soc. 2019, 141, 13812.
[10]
(h) Han, S.; Liu, S.; Liu, L.; Ackermann, L.; Li, J. Org. Lett. 2019, 21, 5387.
[10]
(i) Ping, Y.; Wang, K.; Pan, Q.; Ding, Z.; Zhou, Z.; Guo, Y.; Kong, W. ACS Catal. 2019, 9, 7335.
[10]
(j) Zhou, Z.; Chen, J.; Chen, H.; Kong, W. Chem. Sci. 2020, 11, 10204.
[10]
(k) Zhan, Y.; Xiao, N.; Shu, W. Nat. Commun. 2021, 12, 928.
[10]
(l) Zhou, Y.; Meng, H.; Shu, W. Chem. Sci. 2022, 13, 4930.
[11]
Shimkin, K.; Montgomery, J. J. Am. Chem. Soc. 2018, 140, 7074.
[12]
Zhou, Z.; Liu, W.; Kong, W. Org. Lett. 2020, 22, 6982.
[13]
Shen, K.; Han, X.; Lu, X. Org. Lett. 2012, 14, 1756.
[14]
For selected examples on Ni-catalyzed anti-carbometallative cyclizations, see: (a) Clarke, C.; Incerti-Pradillos, C. A.; Lam, H. W. J. Am. Chem. Soc. 2016, 138, 8068.
[14]
(b) Zhang, X.; Xie, X.; Liu, Y. Chem. Sci. 2016, 7, 5815.
[14]
(c) Karad, S. N.; Panchal, H.; Clarke, C.; Lewis, W.; Lam, H. W. Angew. Chem., Int. Ed. 2018, 57, 9122.
[14]
(d) Gillbard, S. M.; Chung, C.; Karad, S. N.; Panchal, H.; Lewis, W.; Lam, H. W. Chem. Comm. 2018, 54, 11769.
[14]
(e) Kumar, G. R.; Kumar, R.; Rajesh, M.; Reddy, M. S. Chem. Commun. 2018, 54, 759.
[14]
(f) Iqbal, N.; Iqbal, N.; Maiti, D.; Cho, E. J. Angew. Chem., Int. Ed. 2019, 58, 15808.
[14]
(g) Di Sanza, R.; Nguyen, T. L. N.; Iqbal, N.; Argent, S. P.; Lewis, W.; Lam, H. W. Chem. Sci. 2020, 11, 2401.
[14]
(h) Gillbard, S. M.; Green, H.; Argent, S. P.; Lam, H. W. Chem. Commun. 2021, 57, 4436.
[14]
(i) Green, H.; Argent, S. P.; Lam, H. W. Chem.-Eur. J. 2021, 27, 5897.
[14]
(g) Min, K. H.; Iqbal, N.; Cho, E. J. Org. Lett. 2022, 24, 989.
[14]
(k) Lu, Z.; Hu, X.; Zhang, H.; Zhang, X.; Cai, J.; Usman, M.; Cong, H.; Liu, W.-B. J. Am. Chem. Soc. 2020, 142, 7328.
[14]
(l) Tambe, S. D.; Ka, C. H.; Hwang, H. S.; Bae, J.; Iqbal, N.; Cho, E. J. Angew. Chem., Int. Ed. 2022, 61, e202203494.
文章导航

/