研究论文

Brønsted酸催化萘酚与丙炔醇的环化反应合成苯并色烯

  • 赵聘 ,
  • 尚旭伟 ,
  • 罗清清 ,
  • 梁梦雨 ,
  • 符媛 ,
  • 张明亮 ,
  • 刘澜涛
展开
  • a 郑州大学化学学院 郑州 450001
    b 商丘师范学院化学化工学院 河南省药物绿色合成工程研究中心 河南商丘 476000

收稿日期: 2023-12-13

  修回日期: 2024-02-23

  网络出版日期: 2024-03-13

基金资助

国家自然科学基金(21572126); 国家自然科学基金(21901152); 河南省科技攻关(202102310003); 河南省商丘市人才支持计划领军人才(SQRC202212004)

Synthesis of Benzochromenes via Brønsted Acid Catalyzed Annulation of Naphthol with Propargyl Alcohols

  • Pin Zhao ,
  • Xuwei Shang ,
  • Qingqing Luo ,
  • Mengyu Liang ,
  • Yuan Fu ,
  • Mingliang Zhang ,
  • Lantao Liu
Expand
  • a College of Chemistry, Zhengzhou University, Zhengzhou 450001
    b Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, School of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan 476000

Received date: 2023-12-13

  Revised date: 2024-02-23

  Online published: 2024-03-13

Supported by

National Natural Sciences Foundation of China(21572126); National Natural Sciences Foundation of China(21901152); Key Scientific and Technological Project of Henan Province(202102310003); Leading Talent Funding Project of Shangqiu Talent Support Plan in Henan Province(SQRC202212004)

摘要

苯并色烯广泛存在于天然产物、生物活性分子和有机功能材料中. 报道了在温和条件下, 以丙炔醇和β-萘酚为原料合成苯并色烯的策略, 并以优秀的收率合成了一系列苯并色烯. 该方案具有适用范围广、官能团兼容性好、条件温和等优点, 且H2O是唯一副产物. 此外, 该方法操作简便, 克级反应可以维持优秀收率, 具有实际应用前景.

本文引用格式

赵聘 , 尚旭伟 , 罗清清 , 梁梦雨 , 符媛 , 张明亮 , 刘澜涛 . Brønsted酸催化萘酚与丙炔醇的环化反应合成苯并色烯[J]. 有机化学, 2024 , 44(6) : 1920 -1928 . DOI: 10.6023/cjoc202312012

Abstract

Benzeochromenes, also named as naphthopyrans, are widely found in natural products, bioactive molecules and organic functional materials. A simple and efficient strategy for the synthesis of benzeochromenes with propargyl alcohols and β-naphthols under mild conditions was developed, and a series of benzeochromenes were prepared in excellent yields. This protocol has the advantages of broad scope, functional group diversity and mild conditions with H2O as the only byproduct. Moreover, ease of operation and gram-scale preparation portend the practical application.

参考文献

[1]
(a) Costa, S. M.O.; Lemos, T. L. G.; Pessoa, O. D. L.; Pessoa, C.; Montenegro, R. C.; Braz, F. R. J. Nat. Prod. 2001, 64, 792.
[1]
(b) Singh, R.; Geetanjali, G.; Chauhan, S. M. S. Chem. Biodiversity 2004, 1, 1241.
[1]
(c) Marec, F.; Kollarova, I.; Jegorov, A. Planta Med. 2001, 67,127.
[1]
Chung, M. I.; Jou, S. J.; Cheng, H, C.; Lin, C. N.; Ko, F. N.; Teng, C. M. (d) Chung, M. I.; Jou, S. J.; Cheng, H, C.; Lin, C. N.; Ko, F. N.; Teng, C. M. J. Nat. Prod. 1994, 57, 313.
[1]
(e) Endale, M.; Ekberg, A.; Akala, H. M.; Alao, J. P.; Sunnerhagen, P.; Yenesew, A.; Erdélyi, M. J. Nat. Prod. 2012, 75, 1299.
[1]
(f) Hussein, A. A.; Barberena, I.; Capson, T. L.; Kursar, T. A.; Coley, P. D.; Solis, P. N.; Gupta, M. P. J. Nat. Prod. 2004, 67, 451.
[1]
(g) Bukuru, J. F.; Van, T. N.; Puyvelde, L. V.; Mathenge, S. G.; Mudida, F. P.; Kimpe, N. D. J. Nat. Prod. 2004, 65, 783.
[1]
(h) Chin, Y.-W.; Yoon, K. D.; Kim, J. Anti-Cancer Agents Med. Chem. 2009, 9, 913.
[2]
For selected reviews, see: (a) Tan, Q.-W.; He, L.-Y.; He, Z.-W.; Liu, W.-H.; Zhang, S.-S.; Lin, L.; Yang, H.-L.; Guan, L.-P. Med. Chem. Res. 2021, 30, 1427.
[2]
(b) Azab, I. H. E.; Break, L. M.; El-Zahrani, Z. A. A. Orient. J. Chem. 2016, 32, 2435.
[2]
(c) Mercaldi, G. F.; D'Antonio, E. L.; Aguessi, A.; Rodriguez, A.; Cordeiro, A. T. Bioorg. Med. Chem. Lett. 2019, 29, 1948.
[2]
(d) Fu, Z.-Y.; Jin, Q.-H.; Qu, Y.-L.; Guan, L.-P. Bioorg. Med. Chem. Lett. 2019, 29, 1909.
[2]
(e) Galano, J. J.; Alias, M.; Perez, R.; Velazquez-Campoy, A.; Hoffman, P. S.; Sancho, J. J. Med. Chem. 2013, 56, 6248.
[2]
(f) Nicolaou, K. C.; Evans, R. M; Roecker, A. J.; Hughes, R.; Downes, M.; Pfefferkorn, J. A. Org. Biomol. Chem. 2003, 1, 908.
[2]
(g) Marot, C.; Chavatte, P.; Morin-Allory, L.; Viaud, M. C.; Guillaumet, G.; Renard, P.; Lesieur, D.; Michel, A. J. Med. Chem. 1998, 41, 4453.
[3]
(a) Kaneko, T.; Akutsu, H.; Yamada, J.; Nakatsuji, S. Org. Lett. 2003, 5, 2127.
[3]
(b) Ushakov, E. N.; Nazarov, V. B.; Fedorova, O. A.; Gromov, S. P.; Chebun'kova, A. V.; Alfimov, M. V.; Barigelletti, F. J. Phys. Org. Chem. 2003, 16, 306.
[3]
(c) Guo, K.; Chen, Y. Mol. Cryst. Liq. Cryst. 2009, 501, 62.
[4]
(a) Shinde, S.; Rashinkar, G.; Salunkhe, R. J. Mol. Liq. 2013, 178,122.
[4]
(b) Kemnitzer, W.; Kasibhatla, S.; Jiang, S. H.; Zhang, H.; Zhao, J. H.; Jia, S. J.; Xu, L. F.; Crogan-Grundy, C.; Denis, R.; Barriault, N.; Vaillancourt, L.; Charron, S.; Dodd, J.; Attardo, G.; Labrecque, D.; Lamothe, S.; Gourdeau, H.; Tseng, B.; Drewe, J.; Cai, S. X. Bioorg. Med. Chem. Lett. 2005, 15, 4745.
[4]
(c) Heravi, M. M.; Baghernejad, B.; Oskooie, H. A. J. Chin. Chem. Soc. 2008, 55, 659.
[4]
(d) Saikia, M.; Saikia, L. RSC Adv. 2016, 6, 15846.
[4]
(e) Khurana, J. M.; Nand, B.; Saluja, P. Tetrahedron 2010, 66, 5637.
[4]
(f) Aghajani, M.; Monadi, N. J. Chin. Chem. Soc. 2019, 66, 775.
[4]
(g) Fekri, L. Z.; Barazandehdoust, M. Polycycl. Aromat. Compd. 2021, 41, 2074.
[5]
(a) Kundu, S. K.; Mondal, J.; Bhaumik, A. Dalton Trans. 2013, 42, 10515.
[5]
(b) Safari, J.; Zarnegar, Z.; Heydarian, M. Bull. Chem. Soc. Jpn. 2012, 85, 1332.
[5]
(c) Ren, Y.-M.; Cai, C. Catal. Commun. 2008, 9, 1017.
[6]
Eshghi, H. Damavandi, S.; Zohuri, G. H. Synth. React. Inorg., Met.-Org., Nano-Met. Chem. 2011, 41, 1067.
[7]
(a) Fareghi-Alamdari, R.; Zekri, N.; Mansouri, F. Res. Chem. Intermed. 2017, 43, 6537.
[7]
(b) Kumar, D.; Reddy, V. B.; Mishra, B. G.; Rana, R, K.; Nadagouda, M, N.; Varma, R.S. Tetrahedron 2007, 63, 3093.
[8]
(a) Mayank.; Billing, B. K.; Agnihotri, P. K.; Kaur, N.; Singh, N.; Jang, D. O. ACS Sustainable Chem. Eng. 2018, 6, 3714.
[8]
(b) Zarnegar, Z.; Safari, J. New J. Chem. 2016, 40, 7986.
[8]
(c) Zhu, A.; Li, Q.; Feng, W.; Fan, D.; Li, L. Catal. Lett. 2021, 151, 720.
[9]
Pawar, G. T.; Magar, R. R.; Lande, M. K. Polycyclic Aromat. Compd. 2016, 38, 75.
[10]
Yin, G. D.; Fan, L. F.; Ren, T. B.; Zheng, C. Y.; Tao, Q.; Wu, A. X.; She, N. F. Org. Biomol. Chem. 2012, 10, 8877.
[11]
Shi, D.; Zhang, S.; Zhuang, Q.; Wang, X.; Tu, S.; Hu, H. Chin. J. Org. Chem. 2003, 23, 1419. (in Chinese)
[11]
(史达清, 张姝, 庄启亚, 王香善, 屠树江, 胡宏纹, 有机化学, 2003, 23, 1419.)
[12]
Sreenivasulu, C.; Thadathil, D. A.; Pal, S.; Gedu, S. Synth. Commun. 2020, 50, 112.
[13]
Porno, J.-L.; Samat, A.; Guglielmetti, R.; Dubest, R.; Aubard, J. Helv. Chim. Acta 1997, 80, 725.
[14]
Tanaka, K.; Aoki, H.; Hosomi, H.; Ohb, S. Org. Lett. 2000, 2, 2133.
[15]
McCubbin, J. A.; Nassar, C.; Krokhin, O. V. Synthesis 2011, 19, 3152.
[16]
Yaragorla, S.; Pareek, A.; Dada, R. Tetrahedron Lett. 2017, 58, 4642.
[17]
Kahle, I.; Tr?ber, O.; Richter, H.; Spange, S. New J. Chem. 2013, 37, 1479.
[18]
Zhang, X.-Z.; Li, B. Q.; Qiu, Z.-W.; Ma, A.; Peng, J.; Du, J.-Y.; Feng, N.; Xu, X.-T.; Pan, H.-P. J. Org. Chem. 2020, 85, 13306.
[19]
Liu, J.; Chen, J.; Liu, T.; Liu, J.; Zeng, Y. Chin. J. Org. Chem. 2023, 43, 379. (in Chinese)
[19]
(刘静, 陈锦涛, 刘婷婷, 刘佳, 曾要富, 有机化学, 2023, 43, 379.)
[20]
(a) Du, S.; Zhou, A.-X.; Yang, R.; Song, X.-R.; Xiao, Q. Org. Chem. Front. 2021, 8, 6760.
[20]
(b) Qian, H.; Huang, D.; Bi, Y.; Yan, G. Adv. Synth. Catal. 2019, 361, 3240.
[21]
Yaragorla, S.; Rajesh, P.; Pareek, A.; Kumar, A. Adv. Synth. Catal. 2018, 360, 4422.
文章导航

/