研究简报

双子季铵盐氯胺的合成及抗菌应用

  • 李令东 ,
  • 张维伦 ,
  • 刘鹏飞 ,
  • 周子杰 ,
  • 周豪 ,
  • 杜中田
展开
  • a 大连理工大学精细化工国家重点实验室 辽宁盘锦 124221
    b 大连理工大学化工海洋与生命学院 辽宁盘锦 124221

收稿日期: 2023-12-29

  修回日期: 2024-02-08

  网络出版日期: 2024-03-13

基金资助

国家自然科学基金(41977197); 国家自然科学基金(22172010)

Synthesis of Gemini-Quaternary Ammonium N-Chloramine Biocides for Antibacterial Applications

  • Lingdong Li ,
  • Weilun Zhang ,
  • Pengfei Liu ,
  • Zijie Zhou ,
  • Hao Zhou ,
  • Zhongtian Du
Expand
  • a State Key Laboratory of Fine Chemicals, Dalian University of Technology, Panjin, Liaoning 124221
    b School of Chemical Engineering and Life & Ocean Science, Dalian University of Technology, Panjin, Liaoning 124221

Received date: 2023-12-29

  Revised date: 2024-02-08

  Online published: 2024-03-13

Supported by

National Natural Science Foundation of China(41977197); National Natural Science Foundation of China(22172010)

摘要

以5,5-二甲基海因为原料, 通过多步合成策略制备了一系列不同长度spacer的双子(Gemini)季铵盐氯胺抗菌剂N,N-双(3-(3-氯-4,4-二甲基-2,5-二氧亚基咪唑烷-1-基)丙基)-N,N,N,N-四甲基丁烷-1,4-二铵氯化物(6)~N,N-双(3-(3-氯-4,4-二甲基-2,5-二氧亚基咪唑烷-1-基)丙基)-N,N,N,N-四甲基癸烷-1,10-二铵氯化物(9), 采用核磁共振波谱(NMR)和高分辨质谱(HRMS)表征了前体和氯胺结构. 以E. coli (ATCC 25922)和S. aureus (ATCC 25923)为模式菌株, 以已报道的Gemini-季铵盐氯胺5为对照, 初步测试了氯胺6~9抗菌活性. 抗菌数据表明, 5~9抗菌活性随结构中spacer增大呈现了先减弱后增强的趋势, 其中spacer为C10H20的氯胺9抗菌活性达到了最佳, 明显优于具有“团队”抗菌效应的5~6, 这可能是9达到了分子触杀所需最佳的亲疏水平衡状态所致. 表明spacer大小决定了“团队”协同抗菌作用的强弱, 且双亲氯胺亲疏水状态对分子触杀贡献极大. 合成了一系列高效阳离子型氯胺抗菌剂, 为今后更高效氯胺抗菌剂研发提供重要参考.

本文引用格式

李令东 , 张维伦 , 刘鹏飞 , 周子杰 , 周豪 , 杜中田 . 双子季铵盐氯胺的合成及抗菌应用[J]. 有机化学, 2024 , 44(6) : 2041 -2048 . DOI: 10.6023/cjoc202312028

Abstract

A series of Gemini-quaternary ammonium (QA) N-chloramine biocides N,N-bis(3-(3-chloro-4,4-dimethyl-2,5-di- oxoimidazolidin-1-yl)propyl)-N,N,N,N-tetramethylbutane-1,4-diaminium chloride (6)~N,N-bis(3-(3-chloro-4,4-dimethyl-2,5-dioxoimidazolidin-1-yl)propyl)-N,N,N,N-tetramethyldecane-1,10-diaminiumchloride (9) with varied spacers were synthesized via ploy-step strategy started from commercial 5,5-dimethylhydantoin. The structures of precursors and corresponding N-chloramines were characterized by nuclear magnetic resonance spectroscopy (NMR) and high-resolution mass spectra (HRMS). Antibacterial activity of N-chloramines was preliminarily tested against E. coli (ATCC 25922) and S. aureus (ATCC 25923) using previous Gemini-QA N-chloramine 5 as control. Antibacterial data showed that antibacterial potency of 5~9 declined first and then increased as the spacer length increased. Specifically, 9 (with spacer of C10H20) demonstrated the towering antibacterial capability, superior to 5~6 that exerted noticeable biocidal team effort. The greatly enhanced efficacy of 9 was probably caused by its preferable hydrophilic-lipophilic balance. It means that spacer length determines team effort biocidal and hydrophilic-lipophilic characteristic greatly contributes efficient contact killing. This study provides a series of efficacious cationic N-chloramine disinfectants, and also offers a vital reference for developing new N-chloramine antimicrobials with even higher efficacy.

参考文献

[1]
Garland, M.; Loscher, S.; Bogyo, M. Chem. Rev. 2017, 117, 4422.
[2]
(a) Lee, D. H.; Bertran, K.; Kwon, J. H. J. Vet. Med. Sci. 2017, 18, 269.
[2]
(b) Fung, T. S.; Liu, D. X. Annu. Rev. Microbiol. 2019, 73, 529.
[3]
Stephens, C. R. A.; Mcammond, B. M.; Hamme, J. D. V.; Otter, K. A.; Reudink, M. W.; Bottos, E. M. Can. J. Microbiol. 2021, 67, 572.
[4]
(a) Fisher, M. C.; Hawkins, N. J.; Sanglard, D.; Gurr, S. J. Science 2018, 360, 739.
[4]
(b) Huang, L. Biochem. Eng. J. 2019, 5, 135. (in Chinese)
[4]
(黄亮, 生物化工, 2019, 5, 135.)
[5]
(a) Liu, C.; Shi, R.-J.; Han, L.-Y.; Huang, Y.-X.; Feng, J.-H; Zhou, C.-E. Dyeing Finish. 2023, 49, 74. (in Chinese)
[5]
(刘畅, 石荣金, 韩璐怡, 黄雅驯, 冯嘉禾, 周嫦娥, 印染, 2023, 49, 74.)
[5]
(b) Ma, W.; Tuo, T.-T.; Zhang, S.-F. Fine Chem. 2012, 29, 521. (in Chinese)
[5]
(马威, 拓婷婷, 张淑芬, 精细化工, 2012, 29, 521.)
[6]
(a) Dong, A.; Wang, Y.-J.; Gao, Y.; Gao, T.; Gao, G. Chem. Rev. 2017, 117, 4806.
[6]
(b) Chen, Y.; Wang, Z.; Zhang, C.; Xin, Y.; Li, L.; Han, Q.; Zhang, Q.; Teng, H. Cellulose 2023, 30, 3473.
[6]
(c) Liu, Y.; Zhang, J.; Zhong, T.; Ren, X. Fibers Polym. 2023, 24, 845.
[7]
(a) Han, Y.-C.; Wang, Y.-L. Acta Chim. Sinica 2023, 81, 1196. (in Chinese)
[7]
(韩玉淳, 王毅琳, 化学学报, 2023, 81, 1196.)
[7]
(b) Wan, J.-S.; Li, H.; Zhang, S.-H.; Yan, J. Fine Chem. 2022, 39, 1320. (in Chinese)
[7]
(万建升, 李红, 张世豪, 闫俊, 精细化工, 2022, 39, 1320.)
[8]
Li, L.-D.; Chi, X.-F.; Yan, J.-W.; Zhao, Z.-H. Chin. J. Org. Chem. 2018, 38, 955. (in Chinese)
[8]
(李令东, 迟晓芳, 闫佳威, 赵梓含, 有机化学, 2018, 38, 955.)
[9]
Li, L.; Pu, T.; Zhanel, G.; Zhao, N.; Ens, W.; Liu, S. Adv. Healthc. Mater. 2012, 1, 609.
[10]
Ning, C.; Li, L.; Logsetty, S.; Ghanbar, S.; Guo, M.; Ens, W.; Liu, S. RSC Adv. 2015, 5, 93877.
[11]
Li, L.; Zhao, Y.; Zhou, H.; Ning, A.; Zhang, F.; Zhao, Z. Tetrahedron Lett. 2017, 58, 321.
[12]
Li, L.; Zhou, H.; Gai, F.; Chi, X.; Zhang, F.; Zhao, Z. RSC Adv. 2017, 7, 13244.
[13]
Li, L.; Jia, D.; Wang, H.; Chang, C.; Yan, J.; Zhao, Z. K. New J. Chem. 2020, 44, 303.
[14]
Li, L.; Wang, H.; Jia, D.; Wang, P. ChemistrySelect 2019, 4, 13198.
[15]
Hoque, J.; Konai, M. M.; Sequeira, S. S.; Samaddar, S.; Haldar, J. J. Med. Chem. 2016, 59, 10750.
[16]
Gilbert, P.; Moore, L. E. J. Appl. Microbiol. 2005, 99, 703.
[17]
Black, J. W.; Jenings, M. C.; Azarewicz, J.; Paniak, T. J.; Grenier, M. C.; Wuest, W. M.; Minbiole, K. P. C. Bioorg. Med. Chem. Lett. 2014, 24, 99.
[18]
Kaczerewska, O.; Brycki, B.; Ribosa, I.; Comelles, F.; Garci, M. T. J. Ind. Eng. Chem. 2018, 59, 141.
[19]
Seferyan, M. A.; Saverina, E. A.; Frolov, N. A.; Detusheva, E. V.; Kamanina, O. A.; Arlyapov, V. A.; Ostashevskaya, I. I.; Ananikov, V. P.; Vereshchagin, A. N. ACS Infect. Dis. 2023, 9, 1206.
[20]
Pisárčik, M.; Devínsky, F. Open Chem. 2014, 12, 577.
[21]
Danino, D.; Talmon, Y.; Zana, R. Langmuir 1995, 11, 1448.
[22]
Zhao, J.-X. Prog. Chem. 2014, 26, 1339. (in Chinese)
[22]
(赵剑曦, 化学进展, 2014, 26, 1339.)
[23]
Jennings, J.; As?c?eric?, D.; Semeraro, E, F.; Malanovic, N.; Pabst, G. ACS Appl. Mater. Interfaces 2023, 15, 40178.
文章导航

/