综述与进展

邻炔基苯胺氢胺化合成轴手性吲哚研究进展

  • 王家晟 ,
  • 王泽树 ,
  • 何卫民 ,
  • 叶龙武
展开
  • a 南华大学化学化工学院 湖南衡阳 421001
    b 厦门大学化学化工学院 福建厦门 361005
    c 中国科学院上海有机化学研究所 金属有机化学国家重点实验室 上海 200032
共同第一作者

收稿日期: 2024-01-12

  修回日期: 2024-02-23

  网络出版日期: 2024-03-13

基金资助

国家自然科学基金(22125108); 湖南省科技创新计划(2023RC4004)

Research Progress on the Hydroamination of o-Alkynylanilines for the Synthesis of Axially Chiral Indoles

  • Jiasheng Wang ,
  • Zeshu Wang ,
  • Weimin He ,
  • Longwu Ye
Expand
  • a College of Chemistry and Chemical Engineering, Nanhua University, Hengyang, Hunan 421001
    b College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005
    c State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032
These authors contributed equally to this work.

Received date: 2024-01-12

  Revised date: 2024-02-23

  Online published: 2024-03-13

Supported by

National Natural Science Foundation of China(22125108); Science and Technology Innovation Program of Hunan Province(2023RC4004)

摘要

邻炔基苯胺的氢胺化反应是合成吲哚的一种重要方法. 在此基础上, 具有一定位阻取代基的邻炔基苯胺在手性过渡金属或者有机小分子催化下, 可以发生阻旋选择性5-endo-dig环化, 从而合成重要的轴手性吲哚化合物. 以不对称氢胺化反应产物中的手性轴分类, 系统介绍了含C—N、C—C以及N—N手性轴的吲哚化合物的催化不对称合成方法.

本文引用格式

王家晟 , 王泽树 , 何卫民 , 叶龙武 . 邻炔基苯胺氢胺化合成轴手性吲哚研究进展[J]. 有机化学, 2024 , 44(6) : 1786 -1792 . DOI: 10.6023/cjoc202401010

Abstract

Hydroamination of o-alkynylanilines is an important approach for the synthesis of indoles. On this basis, o-alkynylanilines bearing substituents with certain steric hindrance could undergo chiral transition-metal catalyzed or organocatalytic atroposelective 5-endo-dig cyclolization for the synthesis of axially chiral indoles. Classified by the types of chiral axes in the products of enantioselective hydroamination, the catalytic enantioselective methods for the preparation of axially chiral indoles containing C—N, C—C and N—N chiral axes are systematically introduced.

参考文献

[1]
For selected reviews on axially chiral chemistry, see: (a) Zhang, H.-H.; Li, T.-Z.; Liu, S.-J.; Shi, F. Angew. Chem., Int. Ed. 2023, e202311053.
[1]
(b) Song, T.; Li, R.; Huang, L.; Jia, S.; Mei, G. Chin. J. Org. Chem. 2023, 43, 1977. (in Chinese)
[1]
(宋亭谕, 李冉, 黄利华, 贾世琨, 梅光建, 有机化学, 2023, 43, 1977.)
[1]
(c) Chen, Y.-B.; Yang, Y.-N.; Huo, X.-Z.; Ye, L.-W.; Zhou, B. Sci. China: Chem. 2023, 66, 2480.
[1]
(d) Cheng, J. K.; Xiang, S.-H.; Tan, B. Acc. Chem. Res. 2022, 55, 2920.
[1]
(e) Zhang, Z.-X.; Zhai, T.-Y.; Ye, L.-W. Chem. Catal. 2021, 1, 1378.
[1]
(f) Kitagawa, O. Acc. Chem. Res. 2021, 54, 719.
[1]
(g) Wang, Y.-B.; Tan, B. Acc. Chem. Res. 2018, 51, 534.
[2]
For selected reviews on axially chiral indole chemistry, see: (a) Cheng, J. K.; Tan, B. Chem. Rec. 2023, e202300147.
[2]
(b) Zhang, H.-H.; Shi, F. Acc. Chem. Res. 2022, 55, 2562.
[2]
(c) Zhang, Y.-C.; Jiang, F.; Shi, F. Acc. Chem. Res. 2020, 53, 425.
[2]
(d) Li, T.-Z.; Liu, S.-J.; Tan, W.; Shi, F. Chem.-Eur. J. 2020, 26, 15779.
[3]
For selected examples on axially chiral natural products and bioactive molecules, see: (a) Chen, Z.-H.; Li, T.-Z.; Wang, N.-Y.; Ma, X.-F.; Ni, S.-F.; Zhang, Y.-C.; Shi, F. Angew. Chem., Int. Ed. 2023, 62, e202300419.
[3]
(b) Chen, K.-W.; Chen, Z.-H.; Yang, S.; Wu, S.-F.; Zhang, Y.-C.; Shi, F. Angew. Chem., Int. Ed. 2022, 61, e202116829.
[3]
(c) Zhang, Q.; Ma?ndi, A.; Li, S.; Chen, Y.; Zhang, W.; Tian, X.; Zhang, H.; Li, H.; Zhang, W.; Zhang, S.; Ju, J.; Kurta?n, T.; Zhang, C. Eur. J. Org. Chem. 2012, 2012, 5256.
[3]
(d) Tsuda, M.; Takahashi, Y.; Fromont, J.; Mikami, Y.; Kobayashi, J. J. Nat. Prod. 2005, 68, 1277.
[3]
(e) Bringmann, G.; Tasler, S.; Endress, H.; Kraus, J.; Messer, K.; Wohlfarth, M.; Lobin, W. J. Am. Chem. Soc. 2001, 123, 2703.
[3]
(f) Ito, C.; Wu, T.-S.; Furukawa, H. Chem. Pharm. Bull. 1990, 38, 1143.
[3]
(g) Norton, R. S.; Wells, R. J. J. Am. Chem. Soc. 1982, 104, 3628.
[4]
For selected examples on axially chiral catalysts and ligands, see: (a) Mino, T.; Komatsu, S.; Wakui, K.; Yamada, H.; Saotome, H.; Sakamoto, M.; Fujita, T. Tetrahedron: Asymmetry 2010, 21, 711.
[4]
(b) Mino, T.; Ishikawa, M.; Nishikawa, K.; Wakui, K.; Sakamoto, M. Tetrahedron: Asymmetry 2013, 24, 499.
[4]
(c) Peng, L.; Li, K.; Xie, C.; Li, S.; Xu, D.; Qin, W.; Yan, H. Angew. Chem., Int. Ed. 2019, 58, 17199.
[4]
(d) Sheng, F.-T.; Yang, S.; Wu, S.-F.; Zhang, Y.-C.; Shi, F. Chin. J. Chem. 2022, 40, 2151.
[4]
(e) Wu, P.; Yu, L.; Gao, C.-H.; Cheng, Q.; Deng, S.; Jiao, Y.; Tan, W.; Shi, F. Fundam. Res. 2023, 3, 237.
[4]
(f) Wang, J.-Y.; Gao, C.-H.; Ma, C.; Wu, X.-Y.; Ni, S.-F.; Tan, W.; Shi, F. Angew. Chem., Int. Ed. 2024, 63, e202316454.
[5]
For a selected review, see: Krüger, K.; Tillack, A.; Beller, M. Adv. Synth. Catal. 2008, 350, 2153.
[6]
Ototake, N.; Morimoto, Y.; Mokuya, A.; Fukaya, H.; Shida, Y.; Kitagawa, O. Chem.-Eur. J. 2010, 16, 6752.
[7]
(a) He, Y.-P.; Wu, H.; Wang, Q.; Zhu, J. Angew. Chem., Int. Ed. 2020, 59, 2105.
[7]
(b) Li, X.; Zhao, L.; Qi, Z.; Li, X. Org. Lett. 2021, 23, 5901.
[7]
(c) Yang, W.-C.; Chen, X.-B.; Song, K.-L.; Wu, B.; Gan, W.-E.; Zheng, Z.-J.; Cao, J.; Xu, L.-W. Org. Lett. 2021, 23, 1309.
[7]
(d) Wang, C.-S.; Wei, L.; Fu, C.; Wang, X.-H.; Wang, C.-J. Org. Lett. 2021, 23, 7401.
[8]
For recent selected reviews on ynamide reactivity, see: (a) Hu, Y.-C.; Zhao, Y.; Wan, B.; Chen, Q.-A. Chem. Soc. Rev. 2021, 50, 2582.
[8]
(b) Chen, Y.-B.; Qian, P.-C.; Ye, L.-W. Chem. Soc. Rev. 2020, 49, 8897.
[8]
(c) Hong, F.-L.; Ye, L.-W. Acc. Chem. Res. 2020, 53, 2003.
[8]
(d) Zhou, B.; Tan, T.-D.; Zhu, X.-Q.; Shang, M.; Ye, L.-W. ACS Catal. 2019, 9, 6393.
[8]
(e) Evano, G.; Theunissen, C.; Lecomte, M. Aldrichim. Acta 2015, 48, 59.
[8]
(f) Wang, X.-N.; Yeom, H.-S.; Fang, L.-C.; He, S.; Ma, Z.-X.; Kedrowski, B. L.; Hsung, R. P. Acc. Chem. Res. 2014, 47, 560.
[9]
For selected reviews on asymmetric synthesis based on ynamides, see: (a) Luo, J.; Chen, G.-S.; Chen, S.-J.; Yu, J.-S.; Li, Z.-D.; Liu, Y.-L. ACS Catal. 2020, 10, 13978.
[9]
(b) Lynch, C. C.; Sripada, A.; Wolf, C. Chem. Soc. Rev. 2020, 49, 8543.
[10]
(a) Zhou, B.; Zhang, Y.-Q.; Zhang, K.; Yang, M.-Y.; Chen, Y.-B.; Li, Y.; Peng, Q.; Zhu, S.-F.; Zhou, Q.-L.; Ye, L.-W. Nat. Commun. 2019, 10, 3234.
[10]
(b) Chen, P.-F.; Zhou, B.; Wu, P.; Wang, B.; Ye, L.-W. Angew. Chem., Int. Ed. 2021, 60, 27164.
[10]
(c) Zhang, Y.-Q.; Chen, Y.-B.; Liu, J.-R.; Wu, S.-Q.; Fan, X.-Y.; Zhang, Z.-X.; Hong, X.; Ye, L.-W. Nat. Chem. 2021, 13, 1093.
[10]
(d) Li, H.-H.; Zhang, Y.-P.; Zhai, T.-Y.; Liu, B.-Y.; Shi, C.-Y.; Zhou, J.-M.; Ye, L.-W. Org. Chem. Front. 2022, 9, 3709.
[10]
(e) Xu, Y.; Qian, G.-L.; Cui, D.-Q.; Qian, P.-C.; Zhao, C.-Y.; Hong, X.; Zhou, B.; Ye, L.-W. ACS Catal. 2023, 13, 8803.
[10]
(f) Li, H.-H.; Meng, Y.-N.; Chen, C.-M.; Wang, Y.-Q.; Zhang, Z.-X.; Xu, Z.; Zhou, B.; Ye, L.-W. Sci. China: Chem. 2023, 66, 1467.
[10]
(g) Zhang, Z.-X.; Wang, X.; Jiang, J.-T.; Chen, J.; Zhu, X.-Q.; Ye, L.-W. Chin. Chem. Lett. 2023, 34, 107647.
[10]
(h) Fan, X.-Y.; Li, J.-C.; Zhou, J.-J.; Zhou, B.; Ye, L.-W. Green Chem. 2023, 25, 10638.
[10]
(i) Cui, D.-Q.; Wang, Y.-Q.; Zhou, B.; Ye, L.-W. Org. Lett. 2023, 25, 9130.
[11]
Wang, Z.-S.; Zhu, L.-J.; Li, C.-T.; Liu, B.-Y.; Hong, X.; Ye, L.-W. Angew. Chem., Int. Ed. 2022, 61, e202201436.
[12]
Xu, D.; Huang, S.; Hu, F.; Peng, L.; Jia, S.; Mao, H.; Gong, X.; Li, F.; Qin, W.; Yan, H. CCS Chem. 2022, 4, 2686.
[13]
Yao, C.-Z.; Xie, Z.-K.; Wang, J.-Y.; Zhang, J.-Y.; Zhao, Z.-Y.; Li, Q.; Yu, J. J. Org. Chem. 2023, 88, 6146.
[14]
Yu, L.; Liu, J.; Xiang, S.; Lu, T.; Ma, P.; Zhao, Q. Org. Lett. 2023, 25, 522.
[15]
Hutskalova, V.; Sparr, C. Synthesis 2023, 55, 1770.
[16]
Wang, C.-S.; Xiong, Q.; Xu, H.; Yang, H.-R.; Dang, Y.; Dong, X.-Q.; Wang, C.-J. Chem. Sci. 2023, 14, 12091.
文章导航

/