综述与进展

四内酰胺大环的分子识别与应用研究进展

  • 郭静 ,
  • 李诗瑶 ,
  • 姚欢 ,
  • 杨留攀 ,
  • 王力立
展开
  • 南华大学药学院 湖南衡阳 421001

收稿日期: 2024-01-16

  修回日期: 2024-02-21

  网络出版日期: 2024-03-13

基金资助

国家自然科学基金(22174059); 国家自然科学基金(22201128); 湖南省自然科学基金(2022JJ40363); 湖南省自然科学基金(2022JJ40365); 湖南省科技创新计划(2022RC1230)

Research Progress of Tetralactam Macrocycle-Based Molecular Recognition and Applications

  • Jing Guo ,
  • Shiyao Li ,
  • Huan Yao ,
  • Liupan Yang ,
  • Lili Wang
Expand
  • School of Pharmaceutical Science, University of South China, Hengyang, Hunan 421001

Received date: 2024-01-16

  Revised date: 2024-02-21

  Online published: 2024-03-13

Supported by

National Natural Science Foundation of China(22174059); National Natural Science Foundation of China(22201128); Provincial Natural Science Foundation of Hunan(2022JJ40363); Provincial Natural Science Foundation of Hunan(2022JJ40365); Science and Technology Innovation Program of Hunan Province(2022RC1230)

摘要

分子识别在自然界中广泛存在, 是许多生物过程以及超分子化学的核心. 水的极性环境会显著削弱特定的非共价相互作用(如氢键), 因此利用人工大环主体在水相中进行分子识别具有挑战性. 四内酰胺大环是一类疏水空腔内部具有极性结合位点的人工大环主体, 通过模仿生物受体的识别特性实现了水中亲水分子的识别, 在疏水效应以及氢键的协同作用下可以实现药物分子、糖类、染料、有机污染物及疾病标志物等物质的选择性识别. 总结了近三十年来四内酰胺大环在分子识别与应用方面的研究进展, 尤其是在水相中的分子识别与应用研究, 希望为今后四内酰胺大环的发展提供参考.

本文引用格式

郭静 , 李诗瑶 , 姚欢 , 杨留攀 , 王力立 . 四内酰胺大环的分子识别与应用研究进展[J]. 有机化学, 2024 , 44(6) : 1777 -1785 . DOI: 10.6023/cjoc202401021

Abstract

Molecular recognition is ubiquitous in nature and plays a crucial role in numerous biological processes and supramolecular chemistry. Due to the significant weakening of specific non-covalent interactions (e.g., hydrogen bonding) by the polar environment of water, the use of artificial macrocyclic hosts for molecular identification in the water is challenging. Tetralactam macrocycles are artificial macrocyclic hosts with polar binding sites inside the hydrophobic cavity, which can realize the recognition of hydrophilic molecules in the water by mimicking the molecular recognition of bioreceptors. Through the synergistic effect of hydrophobic effect and hydrogen bonds, it can selectively recognize drug molecules, saccharides, dyes, organic pollutants, disease markers and other substances in the aqueous environment. The research advances of tetralactam macrocycles in molecular recognition and application over the last 30 years are summarized, with a particular emphasis on its molecular recognition and application in the water, hoping to provide a reference for the development of tetralactam macrocycles in the future.

参考文献

[1]
Wagner, B. D. Host-Guest Chemistry-Supramolecular Inclusion in Solution, De Gruyter, 2020.
[2]
Li, D.-H.; Smith, B. D. Beilstein J. Org. Chem. 2019, 15, 1086.
[3]
Liu, W.; Samanta, S. K.; Smith, B. D.; Isaacs, L. Chem. Soc. Rev. 2017, 46, 2391.
[4]
Luo, Q. H. Macrocyclic Chemistry-Host-Guest Compound and Supramolecular, Science Press, Beijing, 2009. (in Chinese)
[4]
(罗勤慧, 大环化学- -主-客体化合物和超分子, 科学出版社, 北京, 2009.)
[5]
Yazaki, K.; Sei, Y.; Akita, M.; Yoshizawa, M. Nat. Commun. 2014, 5, 5179.
[6]
Biedermann, F.; Schneider, H.-J. Chem. Rev. 2016, 116, 5216.
[7]
Persch, E.; Dumele, O.; Diederich, F. Angew. Chem., Int. Ed. 2015, 54, 3290.
[8]
Livnah, O.; Bayer, E. A.; Wilchek, M.; Sussman, J. L. Proc. Natl. Acad. Sci. U. S. A. 1993, 90, 5076.
[9]
Escobar, L.; Ballester, P. Chem. Rev. 2021, 121, 2445.
[10]
Yang, L.-P.; Wang, X.; Yao, H.; Jiang, W. Acc. Chem. Res. 2019, 53, 198.
[11]
Shen, Z.-Y.; Li, S.-Y.; Yang, L.-P.; Wang, L.-L.; Yao, H. Chin. J. Org. Chem. 2024, 44, 1151. (in Chinese)
[11]
(谌泽亚, 李诗瑶, 杨留攀, 王力立, 姚欢, 有机化学, 2024, 44, 1151.)
[12]
Huang, G.; Chen, Z.; Wei, X.; Chen, Y.; Li, X.; Zhong, H.; Tan, M. Chin. J. Org. Chem. 2020, 40, 614. (in Chinese)
[12]
(黄国保, 陈志林, 韦贤生, 陈钰, 李秀英, 仲辉, 谭明雄, 有机化学, 2020, 40, 614.)
[13]
Purse, B. W.; Rebek, J. Jr, Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 10777.
[14]
Adriaenssensa, L.; Ballester, P. Chem. Soc. Rev. 2013, 42, 3261.
[15]
Butterfield, S. M.; Rebek, J., Jr. J. Am. Chem. Soc. 2006, 128, 15366.
[16]
Gassensmith, J. J.; Arunkumar, E.; Barr, L.; Baumes, J. M.; DiVittorio, K. M.; Johnson, J. R.; Noll, B. C.; Smith, B. D. J. Am. Chem. Soc. 2007, 129, 15054.
[17]
Wang, Y.-F.; Wang, S.-M.; Zhang, X.; Nian, H.; Zheng, L.-S.; Wang, X.; Schreckenbach, G.; Jiang, W.; Yang, L.-P.; Wang, L.-L. Angew. Chem., Int. Ed. 2023, 62, e202310115.
[18]
Allen, W. E.; Gale, P. A.; Brown, C. T.; Lynch, V. M.; Sessler, J. L. J. Am. Chem. Soc. 1996, 118, 12471.
[19]
Escobar, L.; Sun, Q.; Ballester, P. Acc. Chem. Res. 2023, 56, 500.
[20]
Verdejo, B.; Gil-Ramírez, G.; Ballester, P. J. Am. Chem. Soc. 2009, 131, 3178.
[21]
Hernández-Alonso, D.; Zankowski, S.; Adriaenssens, L.; Ballester, P. Org. Biomol. Chem. 2013, 13, 1022.
[22]
Pe?uelas-Haro, G.; Ballester, P. Chem. Sci. 2019, 10, 2413.
[23]
Xiong, Y.; Li, M.; Xiong, P.; Yang, M.; Qing, G.; Sun, T. Prog. Chem. 2014, 26, 48. (in Chinese)
[23]
(熊雨婷, 李闵闵, 熊鹏, 杨梦, 卿光焱, 孙涛垒, 化学进展, 2014, 26, 48.)
[24]
Klein, E.; Crump, M. P.; Davis, A. P. Angew. Chem., Int. Ed. 2005, 44, 298.
[25]
Shorthill, B. J.; Avetta, C. T.; Glass, T. E. J. Am. Chem. Soc. 2004, 126, 12732.
[26]
Ferrand, Y.; Crump, M. P.; Davis, A. P. Science 2007, 318, 619.
[27]
Ríos, P.; Mooibroek, T. J.; Carter, T. S.; Williams, C.; Wilson, M. R.; Crump, M. P.; Davis, A. P. Chem. Sci. 2017, 8, 4056.
[28]
Davis, A. P. Chem. Soc. Rev. 2020, 49, 2531.
[29]
Tromans, R. A.; Samanta, S. K.; Chapman, A. M.; Davis, A. P. Chem. Sci. 2020, 11, 3223.
[30]
Huang, G.-B.; Wang, S.-H.; Ke, H.; Yang, L.-P.; Jiang, W. J. Am. Chem. Soc. 2016, 138, 14550.
[31]
Wang, L.-L.; Chen, Z.; Liu, W.-E.; Ke, H.; Wang, S.-H.; Jiang, W. J. Am. Chem. Soc. 2017, 139, 8436.
[32]
Liu, W.-E.; Chen, Z.; Yang, L.-P.; Au-Yeung, H. Y.; Jiang, W. Chem. Commun. 2019, 55, 9797.
[33]
Yang, L. P.; Ke, H.; Yao, H.; Jiang, W. Angew. Chem., Int. Ed. 2021, 60, 21404.
[34]
Li, S.-Y.; Wang, D.; Qiu, Y.; Wang, L.-L.; Yang, L.-P. Curr. Opin. Green Sustainable Chem. 2023, 40.
[35]
Yao, H.; Ke, H.; Zhang, X.; Pan, S.-J.; Li, M.; Yang, L.-P.; Schreckenbach, G.; Jiang, W. J. Am. Chem. Soc. 2018, 140, 13466.
[36]
Zhao, C.-D.; Yao, H.; Li, S.-Y.; Du, F.; Wang, L.-L.; Yang, L.-P. Chin. Chem. Lett. 2024, 35, 108879.
[37]
Hunter, C. A. J. Chem. Soc.,Chem. Commun. 1991, 749.
[38]
Johnston, A. G.; Leigh, D. A.; Pritchard, R. J.; Deegan, M. D. Angew. Chem., Int. Ed. Engl. 1995, 34, 1209.
[39]
Johnston, A. G.; Leigh, D. A.; Murphy, A.; Smart, J. P.; Deegan, M, D., J. Am. Chem. Soc. 1996, 118, 10662.
[40]
Biscarini, F.; Cavallini, M.; Leigh, D. A.; León, S.; Teat, S. J.; Wong, J. K. Y.; Zerbetto, F. J. Am. Chem. Soc. 2002, 124, 225.
[41]
Zhai, C.; Xu, C.; Cui, Y.; Wojtas, L.; Liu, W. Chem.-Eur. J. 2023, 29, e202300524.
[42]
Liu, W.; Oliver, A. G.; Smith, B. D. J. Am. Chem. Soc. 2018, 140, 6810.
[43]
Wang, L.-L.; Tu, Y.-K.; Yao, H.; Jiang, W. Beilstein J. Org. Chem. 2019, 15, 1460.
[44]
Wang, L.-L.; Tu, Y.-K.; Valkonen, A.; Rissanen, K.; Jiang, W. Chin. J. Chem. 2019, 37, 892.
[45]
Ke, C.; Destecroix, H.; Crump, M. P.; Davis, A. P. Nat. Chem. 2012, 4, 718.
[46]
Peck, E. M.; Liu, W.; Spence, G. T.; Shaw, S. K.; Davis, A. P.; Destecroix, H.; Smith, B. D. J. Am. Chem. Soc. 2015, 137, 8668.
[47]
Allott, C.; Adams, H.; Bernad, P. L. Jr; Hunter, C. A.; Rotgerc, C.; Thomasa, J. A. Chem. Commun. 1998, 2449.
[48]
Destecroix, H.; Renney, C. M.; Mooibroek, T. J.; Carter, T. S.; Stewart, P. F. N.; Crump, M. P.; Davis, A. P. Angew. Chem., Int. Ed. 2015, 54, 2057.
[49]
Fernandes, A.; Viterisi, A.; Aucagne, V.; Leigh, D. A.; Papot, S. Chem. Commun. 2012, 48, 2083.
[50]
Dong, J.; Davis, A. P. Angew. Chem., Int. Ed. 2020, 60, 8035.
[51]
Fiona, H. A.; Carver, J.; Hunter, C. A.; Osborne, N. J. Chem. Commun. 1996, 2529.
[52]
Fernandes, A.; Viterisi, A.; Coutrot, F.; Potok, S.; Leigh, D. A.; Aucagne, V.; Papot, S. Angew. Chem., Int. Ed. 2009, 48, 6443.
[53]
Dempsey, J. M.; Zhai, C.; McGarraugh, H. H.; Schreiber, C. L.; Stoffel, S. E.; Johnson, A.; Smith, B. D. Chem. Commun. 2019, 55, 12793.
[54]
Zhang, H.; Wang, L.-L.; Pang, X.-Y.; Yang, L.-P.; Jiang, W. Chem. Commun. 2021, 57, 13724.
[55]
Li, S.-Y.; Yao, H.; Hu, H.; Chen, W.-J.; Yang, L.-P.; Wang, L.-L. Chem. Commun. 2023, 59, 7204.
[56]
Yao, H.; Li, S.-Y.; Zhang, H.; Pang, X.-Y.; Lu, J.-L.; Chen, C.; Jiang, W.; Yang, L.-P.; Wang, L.-L. Chem. Commun. 2023, 59, 5411.
[57]
Yao, H.; Qin, J.; Wang, Y.-F.; Wang, S.-M.; Yi, L.-H.; Li, S.-Y.; Du, F.; Yang, L.-P.; Wang, L.-L. Chin. Chem. Lett. 2024, 35, 109154.
[58]
Mandal, P. K.; Kauffmann, B.; Destecroix, H.; Ferrand, Y.; Davis, A. P.; Huc, I. Chem. Commun. 2016, 52, 9355.
[59]
Van Eker, D.; Samanta, S. K.; Davis, A. P. Chem. Commun. 2020, 56, 9268.
[60]
Liu, W.; Johnson, A.; Smith, B. D. J. Am. Chem. Soc. 2018, 140, 3361.
[61]
Federica, B.; Patrick, S.; Soumen, S.; Tiddo, M.; Thomas, H.-J.; Kejia, S.; Bradley, S.; Davis, A. P.; Balduzzi, F.; Stewart, P.; Samanta, S. K.; Mooibroek, T. J.; Hoeg-Jensen, T.; Shi, K.; Smith, B. D.; Davis, A. P. Angew. Chem., Int. Ed. 2023, 62, e202314373.
[62]
Roland, F. M.; Peck, E. M.; Rice, D. R.; Smith, B. D. Bioconjugate Chem. 2017, 28, 1093.
[63]
Liu, W.; Gómez-Durán, C. F. A.; Smith, B. D. J. Am. Chem. Soc. 2017, 139, 6390.
[64]
Shaw, S. K.; Liu, W.; Gómez Durán, C. F. A.; Schreiber, C. L.; Betancourt Mendiola, M. L.; Zhai, C.; Roland, F. M.; Padanilam, S. J.; Smith, B. D. Chem.-Eur. J. 2018, 24, 13821.
[65]
Dharmarwardana, M.; Dempsey, J. M.; Padilla-Coley, S.; Jarvis, T. S.; Shi, K.; Atkinson, K. M.; Smith, B. D. Chem. Commun. 2021, 57, 13518.
文章导航

/