ANIPE配体促进的铜催化联烯与亚胺和联硼试剂的不对称碳硼化反应
收稿日期: 2024-01-20
修回日期: 2024-03-04
网络出版日期: 2024-03-13
基金资助
国家重点研发计划(2022YFA1503702); 国家重点研发计划(2021YFF0701600); 国家自然科学基金(22325110); 国家自然科学基金(92256303); 国家自然科学基金(21821002); 国家自然科学基金(22171280); 中国科学院战略性先导科技专项(XDB061000); 上海市优秀学术带头人计划(22XD1424900); 中国科学院青年交叉团队(JCTD-2021-11); 宁波市自然科学基金(2022J017)
ANIPE-Ligand-Enabled Copper-Catalyzed Asymmetric Carboboronation of Allenes with Imines and Diborons
Received date: 2024-01-20
Revised date: 2024-03-04
Online published: 2024-03-13
Supported by
National Key R&D Program of China(2022YFA1503702); National Key R&D Program of China(2021YFF0701600); National Natural Science Foundation of China(22325110); National Natural Science Foundation of China(92256303); National Natural Science Foundation of China(21821002); National Natural Science Foundation of China(22171280); Strategic Priority Research Program of the Chinese Academy of Sciences(XDB061000); Program of Shanghai Academic Research Leader(22XD1424900); CAS Youth Interdisciplinary Team(JCTD-2021-11); Ningbo Natural Science Foundation(2022J017)
刘晓东 , 施世良 . ANIPE配体促进的铜催化联烯与亚胺和联硼试剂的不对称碳硼化反应[J]. 有机化学, 2024 , 44(6) : 1884 -1896 . DOI: 10.6023/cjoc202401027
A diastereo- and enantioselective copper-catalyzed carboboronation of allene with aldimines and diborons under mild conditions is developed. This protocol is enabled by a chiral ANIPE-based copper catalyst, providing a facile and efficient approach to chiral homoallylic amines bearing two adjacent stereocenters with high enantioselectivities and diastereoselectivities. Besides, aldiminoester and ketiminoester could both serve as competent electrophiles for the production of enantioenriched α-amino esters.
| [1] | (a) Schmidt, U.; Schmidt, J. Synthesis 1994, 1994, 300. |
| [1] | (b) Ding, H.; Friestad, G. K. Synthesis 2005, 2005, 2815. |
| [1] | (c) Trost, B. M.; Tang, W.; Toste, F. D. J. Am. Chem. Soc. 2005, 127, 14785. |
| [1] | (d) Zhao, Y.-S.; Liu, Q.; Tian, P.; Tao, J.-C.; Lin, G.-Q. Org. Biomol. Chem. 2015, 13, 4174. |
| [2] | For selected examples using homoallylic amines as intermediates, see: (a) Ren, H.; Wulff, W. D. J. Am. Chem. Soc. 2011, 133, 5656. |
| [2] | (b) Silverio, D. L.; Torker, S.; Pilyugina, T.; Vieira, E. M.; Snapper, M. L.; Haeffner, F.; Hoveyda, A. H. Nature 2013, 494, 216. |
| [2] | (c) Zhou, X.; Li, W.; Zhou, R.; Wu, X.; Huang, Y.; Hou, W.; Li, C.; Zhang, Y.; Nie, W.; Wang, Y.; Song, H.; Liu, X.-Y.; Zheng, Z.; Xie, F.; Li, S.; Zhong, W.; Qin, Y. CCS Chem. 2021, 3, 1376. |
| [2] | For selected examples using homoallylic amines as catalysts and ligands, see: (d) Jin, S.-S.; Wang, H.; Xu, M.-H. Chem. Commun. 2011, 47, 7230. |
| [2] | (e) Melchiorre, P. Angew. Chem., Int. Ed. 2012, 51, 9748. |
| [2] | (f) Dong, X.-Y.; Zhang, Y.-F.; Ma, C.-L.; Gu, Q.-S.; Wang, F.-L.; Li, Z.-L.; Jiang, S.-P.; Liu, X.-Y. Nat. Chem. 2019, 11, 1158. |
| [3] | (a) Huo, H.-X.; Duvall, J. R.; Huang, M.-Y.; Hong, R. Org. Chem. Front. 2014, 1, 303. |
| [3] | (b) Blieck, R.; Taillefer, M.; Monnier, F. Chem. Rev. 2020, 120, 13545. |
| [3] | (c) Liu, J.; Cao, C.-G.; Sun, H.-B.; Zhang, X.; Niu, D. J. Am. Chem. Soc. 2016, 138, 13103. |
| [3] | (d) Liu, C.; Deng, C.; Yang, H.; Qian, X.; Tang, S.; Poznik, M.; Chruma, J. J. J. Org. Chem. 2019, 84, 10102. |
| [3] | (e) Wang, R.-Q.; Shen, C.; Cheng, X.; Wang, Z.-F.; Tao, H.-Y.; Dong, X.-Q.; Wang, C.-J. Chin. J. Chem. 2020, 38, 807. |
| [3] | (f) Ronchi, E.; Paradine, S. M.; Jacobsen, E. N. J. Am. Chem. Soc. 2021, 143, 7272. |
| [3] | (g) Byun, S.; Farah, A. O.; Wise, H. R.; Katchmar, A.; Cheong, P. H.-Y.; Scheidt, K. A. J. Am. Chem. Soc. 2022, 144, 22850. |
| [4] | (a) Alam, R.; Diner, C.; Jonker, S.; Eriksson, L.; Szabó, K. J. Angew. Chem., Int. Ed. 2016, 55, 14417. |
| [4] | (b) van der Mei, F. W.; Miyamoto, H.; Silverio, D. L.; Hoveyda, A. H. Angew. Chem., Int. Ed. 2016, 55, 4701. |
| [4] | (c) Zhang, H.-J.; Shi, C.-Y.; Zhong, F.; Yin, L. J. Am. Chem. Soc. 2017, 139, 2196. |
| [4] | (d) Green, J. C.; Zanghi, J. M.; Meek, S. J. J. Am. Chem. Soc. 2020, 142, 1704. |
| [4] | (e) Zhou, P.; Shao, X.; Malcolmson, S. J. J. Am. Chem. Soc. 2021, 143, 13999. |
| [5] | For reviews, see: (a) Pulis, A. P.; Yeung, K.; Procter, D. J. Chem. Sci. 2017, 8, 5240. |
| [5] | (b) Hemming, D.; Fritzemeier, R.; Westcott, S. A.; Santos, W. L.; Steel, P. G. Chem. Soc. Rev. 2018, 47, 7477. |
| [5] | (c) Talbot, F. J. T.; Dherbassy, Q.; Manna, S.; Shi, C.; Zhang, S.; Howell, G. P.; Perry, G. J. P.; Procter, D. J. Angew. Chem., Int. Ed. 2020, 59, 20278. |
| [5] | (d) Whyte, A.; Torelli, A.; Mirabi, B.; Zhang, A.; Lautens, M. ACS Catal. 2020, 10, 11578. |
| [5] | (e) Kanti Das, K.; Manna, S.; Panda, S. Chem. Commun. 2021, 57, 441. |
| [5] | (f) Bose, S. K.; Mao, L.; Kuehn, L.; Radius, U.; Nekvinda, J.; Santos, W. L.; Westcott, S. A.; Steel, P. G.; Marder, T. B. Chem. Rev. 2021, 121, 13238. |
| [5] | For examples, see: (g) Li, X.; Liu, X.; Fu, Y.; Wang, L.; Zhou, L.; Feng, X. Chem.-Eur. J. 2008, 14, 4796. |
| [5] | (h) Gandhi, S.; List, B. Angew. Chem., Int. Ed. 2013, 52, 2573. |
| [5] | (i) Meng, F.; Jang, H.; Jung, B.; Hoveyda, A. H. Angew. Chem., Int. Ed. 2013, 52, 5046. |
| [5] | (j) Fujihara, T.; Sawada, A.; Yamaguchi, T.; Tani, T.; Terao, J.; Tsuji, Y. Angew. Chem., Int. Ed. 2017, 56, 1539. |
| [5] | (k) Jiang, Y.; Schaus, S. E. Angew. Chem., Int. Ed. 2017, 56, 1544. |
| [5] | (l) Villar, L.; Orlov, N. V.; Kondratyev, N. S.; Uria, U.; Vicario, J. L.; Malkov, A. V. Chem.-Eur. J. 2018, 24, 16262. |
| [5] | (m) Yeung, K.; Talbot, F. J. T.; Howell, G. P.; Pulis, A. P.; Procter, D. J. ACS Catal. 2019, 9, 1655. |
| [5] | (n) Han, J.; Zhou, W.; Zhang, P.-C.; Wang, H.; Zhang, Wu, H.-H.; Zhang, J ACS Catal. 2019, 9, 6890. |
| [5] | (o) Deng, H.; Meng, Z.; Wang, S.; Zhang, Z.; Zhang, Y.; Shangguan, Y.; Yang, F.; Yuan, D.; Guo, H.; Zhang, C. Adv. Synth. Catal. 2019, 361, 3582. |
| [5] | (p) Pérez-Saavedra, B.; Velasco-Rubio, á.; Rivera-Chao, E.; Varela, J. A.; Saá, C.; Fa?anás-Mastral, M. J. Am. Chem. Soc. 2022, 144, 16206. |
| [6] | Jiang, L.; Cao, P.; Wang, M.; Chen, B.; Wang, B.; Liao, J. Angew. Chem., Int. Ed. 2016, 55, 13854. |
| [7] | Jang, H.; Romiti, F.; Torker, S.; Hoveyda, A. H. Nat. Chem. 2017, 9, 1269. |
| [8] | Zhang, S.; Pozo, J. D.; Romiti, F.; Mu, Y.; Torker, S.; Hoveyda, A. H. Science 2019, 364, 45. |
| [9] | Zhao, C.-Y.; Zheng, H.; Ji, D.-W.; Min, X.-T.; Hu, Y.-C.; Chen, Q.-A. Cell Rep. Phys. Sci. 2020, 1, 100067. |
| [10] | Yeung, K.; Ruscoe, R. E.; Rae, J.; Pulis, A. P.; Procter, D. J. Angew. Chem., Int. Ed. 2016, 55, 11912. |
| [11] | (a) Cai, Y.; Yang, X.-T.; Zhang, S.-Q.; Li, F.; Li, Y.-Q.; Ruan, L.-X.; Hong, X.; Shi, S.-L. Angew. Chem., Int. Ed. 2018, 57, 1376. |
| [11] | (b) Cai, Y.; Ye, X.; Liu, S.; Shi, S.-L. Angew. Chem., Int. Ed. 2019, 58, 13433. |
| [11] | (c) Cai, Y.; Zhang, J.-W.; Li, F.; Liu, J.-M.; Shi, S.-L. ACS Catal. 2019, 9, 1. |
| [11] | (d) Shen, D.; Xu, Y.; Shi, S.-L. J. Am. Chem. Soc. 2019, 141, 14938. |
| [11] | (e) Zhang, W.-B.; Yang, X.-T.; Ma, J.-B.; Su, Z.-M.; Shi, S.-L. J. Am. Chem. Soc. 2019, 141, 5628. |
| [11] | (f) Cai, Y.; Shi, S.-L. J. Am. Chem. Soc. 2021, 143, 11963. |
| [11] | (g) Cai, Y.; Ruan, L.-X.; Rahman, A.; Shi, S.-L. Angew. Chem., Int. Ed. 2021, 60, 5262. |
| [11] | (h) Wang, Z.-C.; Xie, P.-P.; Xu, Y.; Hong, X.; Shi, S.-L. Angew. Chem., Int. Ed. 2021, 60, 16077. |
| [11] | (i) Wang, Z.-C.; Gao, J.; Cai, Y.; Ye, X.; Shi, S.-L. CCS Chem. 2022, 4, 1169. |
| [11] | (j) Zhang, W.-B.; Chen, G.; Shi, S.-L. J. Am. Chem. Soc. 2022, 144, 130. |
| [11] | (k) Ma, J.-B.; Zhao, X.; Zhang, D.; Shi, S.-L. J. Am. Chem. Soc. 2022, 144, 13643. |
| [11] | (l) Liu, C.-F.; Wang, Z.-C.; Luo, X.; Lu, J.; Ko, M.; Shi, S.-L.; Koh, M. J. Nat. Catal. 2022, 5, 934. |
| [11] | (m) Ruan, L. X.; Sun, B.; Liu, J. -M.; Shi, S.-L. Science 2023, 379, 662. |
| [11] | (n) Wang, Z.-C.; Luo, X.; Zhang, J.-W. Liu, C.-F.; Koh, M. J.; Shi, S.-L. Nat. Catal. 2023, 6, 1087. |
| [12] | (a) Fujihara, T.; Semba, K.; Terao, J.; Tsuji, Y. Catal. Sci. Technol. 2014, 4, 1699. |
| [12] | (b) Bin, H.-Y.; Wei, X.; Zi, J.; Zuo, Y.-J.; Wang, T.-C.; Zhong, C.-M. ACS Catal. 2015, 5, 6670. |
| [12] | (c) Yoshida, H. ACS Catal. 2016, 6, 1799. |
| [12] | (d) Chen, J.; Guo, J.; Lu, Z. Chin. J. Chem. 2018, 36, 1075. |
| [12] | (e) Rej, S.; Das, A.; Panda, T. K. Adv. Synth. Catal. 2021, 363, 4818. |
| [13] | (a) Alam, R.; Das, A.; Huang, G.; Eriksson, L.; Himo, F.; Szabó, K. J. Chem. Sci. 2014, 5, 273. |
| [13] | (b) Rae, J.; Yeung, K.; McDouall, J. J. W.; Procter, D. J. Angew. Chem., Int. Ed. 2016, 55, 1102. |
| [13] | (c) Li, Z.; Zhang, L.; Nishiura, M.; Luo, G.; Luo, Y.; Hou, Z. ACS Catal. 2020, 10, 11685. |
| [13] | (d) Ozawa, Y.; Endo, K.; Ito, H. J. Am. Chem. Soc. 2021, 143, 13865. |
/
| 〈 |
|
〉 |