研究论文

ANIPE配体促进的铜催化联烯与亚胺和联硼试剂的不对称碳硼化反应

  • 刘晓东 ,
  • 施世良
展开
  • 中国科学院上海有机化学研究所 金属有机化学国家重点实验室 上海 200032

收稿日期: 2024-01-20

  修回日期: 2024-03-04

  网络出版日期: 2024-03-13

基金资助

国家重点研发计划(2022YFA1503702); 国家重点研发计划(2021YFF0701600); 国家自然科学基金(22325110); 国家自然科学基金(92256303); 国家自然科学基金(21821002); 国家自然科学基金(22171280); 中国科学院战略性先导科技专项(XDB061000); 上海市优秀学术带头人计划(22XD1424900); 中国科学院青年交叉团队(JCTD-2021-11); 宁波市自然科学基金(2022J017)

ANIPE-Ligand-Enabled Copper-Catalyzed Asymmetric Carboboronation of Allenes with Imines and Diborons

  • Xiaodong Liu ,
  • Shiliang Shi
Expand
  • State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032

Received date: 2024-01-20

  Revised date: 2024-03-04

  Online published: 2024-03-13

Supported by

National Key R&D Program of China(2022YFA1503702); National Key R&D Program of China(2021YFF0701600); National Natural Science Foundation of China(22325110); National Natural Science Foundation of China(92256303); National Natural Science Foundation of China(21821002); National Natural Science Foundation of China(22171280); Strategic Priority Research Program of the Chinese Academy of Sciences(XDB061000); Program of Shanghai Academic Research Leader(22XD1424900); CAS Youth Interdisciplinary Team(JCTD-2021-11); Ningbo Natural Science Foundation(2022J017)

摘要

发展了温和条件下铜催化联烯与亚胺、联硼试剂的非对映选择性和对映选择性的碳硼化反应. 该策略基于手性ANIPE-铜催化剂, 提供了一个简便而有效的合成含两个相邻立体中心的手性高烯丙基胺的方法, 具有优秀的对映和非对映选择性. 此外, 以醛亚胺酯和酮亚胺酯为亲电试剂时, 可以制备手性α-氨基酯类化合物.

本文引用格式

刘晓东 , 施世良 . ANIPE配体促进的铜催化联烯与亚胺和联硼试剂的不对称碳硼化反应[J]. 有机化学, 2024 , 44(6) : 1884 -1896 . DOI: 10.6023/cjoc202401027

Abstract

A diastereo- and enantioselective copper-catalyzed carboboronation of allene with aldimines and diborons under mild conditions is developed. This protocol is enabled by a chiral ANIPE-based copper catalyst, providing a facile and efficient approach to chiral homoallylic amines bearing two adjacent stereocenters with high enantioselectivities and diastereoselectivities. Besides, aldiminoester and ketiminoester could both serve as competent electrophiles for the production of enantioenriched α-amino esters.

参考文献

[1]
(a) Schmidt, U.; Schmidt, J. Synthesis 1994, 1994, 300.
[1]
(b) Ding, H.; Friestad, G. K. Synthesis 2005, 2005, 2815.
[1]
(c) Trost, B. M.; Tang, W.; Toste, F. D. J. Am. Chem. Soc. 2005, 127, 14785.
[1]
(d) Zhao, Y.-S.; Liu, Q.; Tian, P.; Tao, J.-C.; Lin, G.-Q. Org. Biomol. Chem. 2015, 13, 4174.
[2]
For selected examples using homoallylic amines as intermediates, see: (a) Ren, H.; Wulff, W. D. J. Am. Chem. Soc. 2011, 133, 5656.
[2]
(b) Silverio, D. L.; Torker, S.; Pilyugina, T.; Vieira, E. M.; Snapper, M. L.; Haeffner, F.; Hoveyda, A. H. Nature 2013, 494, 216.
[2]
(c) Zhou, X.; Li, W.; Zhou, R.; Wu, X.; Huang, Y.; Hou, W.; Li, C.; Zhang, Y.; Nie, W.; Wang, Y.; Song, H.; Liu, X.-Y.; Zheng, Z.; Xie, F.; Li, S.; Zhong, W.; Qin, Y. CCS Chem. 2021, 3, 1376.
[2]
For selected examples using homoallylic amines as catalysts and ligands, see: (d) Jin, S.-S.; Wang, H.; Xu, M.-H. Chem. Commun. 2011, 47, 7230.
[2]
(e) Melchiorre, P. Angew. Chem., Int. Ed. 2012, 51, 9748.
[2]
(f) Dong, X.-Y.; Zhang, Y.-F.; Ma, C.-L.; Gu, Q.-S.; Wang, F.-L.; Li, Z.-L.; Jiang, S.-P.; Liu, X.-Y. Nat. Chem. 2019, 11, 1158.
[3]
(a) Huo, H.-X.; Duvall, J. R.; Huang, M.-Y.; Hong, R. Org. Chem. Front. 2014, 1, 303.
[3]
(b) Blieck, R.; Taillefer, M.; Monnier, F. Chem. Rev. 2020, 120, 13545.
[3]
(c) Liu, J.; Cao, C.-G.; Sun, H.-B.; Zhang, X.; Niu, D. J. Am. Chem. Soc. 2016, 138, 13103.
[3]
(d) Liu, C.; Deng, C.; Yang, H.; Qian, X.; Tang, S.; Poznik, M.; Chruma, J. J. J. Org. Chem. 2019, 84, 10102.
[3]
(e) Wang, R.-Q.; Shen, C.; Cheng, X.; Wang, Z.-F.; Tao, H.-Y.; Dong, X.-Q.; Wang, C.-J. Chin. J. Chem. 2020, 38, 807.
[3]
(f) Ronchi, E.; Paradine, S. M.; Jacobsen, E. N. J. Am. Chem. Soc. 2021, 143, 7272.
[3]
(g) Byun, S.; Farah, A. O.; Wise, H. R.; Katchmar, A.; Cheong, P. H.-Y.; Scheidt, K. A. J. Am. Chem. Soc. 2022, 144, 22850.
[4]
(a) Alam, R.; Diner, C.; Jonker, S.; Eriksson, L.; Szabó, K. J. Angew. Chem., Int. Ed. 2016, 55, 14417.
[4]
(b) van der Mei, F. W.; Miyamoto, H.; Silverio, D. L.; Hoveyda, A. H. Angew. Chem., Int. Ed. 2016, 55, 4701.
[4]
(c) Zhang, H.-J.; Shi, C.-Y.; Zhong, F.; Yin, L. J. Am. Chem. Soc. 2017, 139, 2196.
[4]
(d) Green, J. C.; Zanghi, J. M.; Meek, S. J. J. Am. Chem. Soc. 2020, 142, 1704.
[4]
(e) Zhou, P.; Shao, X.; Malcolmson, S. J. J. Am. Chem. Soc. 2021, 143, 13999.
[5]
For reviews, see: (a) Pulis, A. P.; Yeung, K.; Procter, D. J. Chem. Sci. 2017, 8, 5240.
[5]
(b) Hemming, D.; Fritzemeier, R.; Westcott, S. A.; Santos, W. L.; Steel, P. G. Chem. Soc. Rev. 2018, 47, 7477.
[5]
(c) Talbot, F. J. T.; Dherbassy, Q.; Manna, S.; Shi, C.; Zhang, S.; Howell, G. P.; Perry, G. J. P.; Procter, D. J. Angew. Chem., Int. Ed. 2020, 59, 20278.
[5]
(d) Whyte, A.; Torelli, A.; Mirabi, B.; Zhang, A.; Lautens, M. ACS Catal. 2020, 10, 11578.
[5]
(e) Kanti Das, K.; Manna, S.; Panda, S. Chem. Commun. 2021, 57, 441.
[5]
(f) Bose, S. K.; Mao, L.; Kuehn, L.; Radius, U.; Nekvinda, J.; Santos, W. L.; Westcott, S. A.; Steel, P. G.; Marder, T. B. Chem. Rev. 2021, 121, 13238.
[5]
For examples, see: (g) Li, X.; Liu, X.; Fu, Y.; Wang, L.; Zhou, L.; Feng, X. Chem.-Eur. J. 2008, 14, 4796.
[5]
(h) Gandhi, S.; List, B. Angew. Chem., Int. Ed. 2013, 52, 2573.
[5]
(i) Meng, F.; Jang, H.; Jung, B.; Hoveyda, A. H. Angew. Chem., Int. Ed. 2013, 52, 5046.
[5]
(j) Fujihara, T.; Sawada, A.; Yamaguchi, T.; Tani, T.; Terao, J.; Tsuji, Y. Angew. Chem., Int. Ed. 2017, 56, 1539.
[5]
(k) Jiang, Y.; Schaus, S. E. Angew. Chem., Int. Ed. 2017, 56, 1544.
[5]
(l) Villar, L.; Orlov, N. V.; Kondratyev, N. S.; Uria, U.; Vicario, J. L.; Malkov, A. V. Chem.-Eur. J. 2018, 24, 16262.
[5]
(m) Yeung, K.; Talbot, F. J. T.; Howell, G. P.; Pulis, A. P.; Procter, D. J. ACS Catal. 2019, 9, 1655.
[5]
(n) Han, J.; Zhou, W.; Zhang, P.-C.; Wang, H.; Zhang, Wu, H.-H.; Zhang, J ACS Catal. 2019, 9, 6890.
[5]
(o) Deng, H.; Meng, Z.; Wang, S.; Zhang, Z.; Zhang, Y.; Shangguan, Y.; Yang, F.; Yuan, D.; Guo, H.; Zhang, C. Adv. Synth. Catal. 2019, 361, 3582.
[5]
(p) Pérez-Saavedra, B.; Velasco-Rubio, á.; Rivera-Chao, E.; Varela, J. A.; Saá, C.; Fa?anás-Mastral, M. J. Am. Chem. Soc. 2022, 144, 16206.
[6]
Jiang, L.; Cao, P.; Wang, M.; Chen, B.; Wang, B.; Liao, J. Angew. Chem., Int. Ed. 2016, 55, 13854.
[7]
Jang, H.; Romiti, F.; Torker, S.; Hoveyda, A. H. Nat. Chem. 2017, 9, 1269.
[8]
Zhang, S.; Pozo, J. D.; Romiti, F.; Mu, Y.; Torker, S.; Hoveyda, A. H. Science 2019, 364, 45.
[9]
Zhao, C.-Y.; Zheng, H.; Ji, D.-W.; Min, X.-T.; Hu, Y.-C.; Chen, Q.-A. Cell Rep. Phys. Sci. 2020, 1, 100067.
[10]
Yeung, K.; Ruscoe, R. E.; Rae, J.; Pulis, A. P.; Procter, D. J. Angew. Chem., Int. Ed. 2016, 55, 11912.
[11]
(a) Cai, Y.; Yang, X.-T.; Zhang, S.-Q.; Li, F.; Li, Y.-Q.; Ruan, L.-X.; Hong, X.; Shi, S.-L. Angew. Chem., Int. Ed. 2018, 57, 1376.
[11]
(b) Cai, Y.; Ye, X.; Liu, S.; Shi, S.-L. Angew. Chem., Int. Ed. 2019, 58, 13433.
[11]
(c) Cai, Y.; Zhang, J.-W.; Li, F.; Liu, J.-M.; Shi, S.-L. ACS Catal. 2019, 9, 1.
[11]
(d) Shen, D.; Xu, Y.; Shi, S.-L. J. Am. Chem. Soc. 2019, 141, 14938.
[11]
(e) Zhang, W.-B.; Yang, X.-T.; Ma, J.-B.; Su, Z.-M.; Shi, S.-L. J. Am. Chem. Soc. 2019, 141, 5628.
[11]
(f) Cai, Y.; Shi, S.-L. J. Am. Chem. Soc. 2021, 143, 11963.
[11]
(g) Cai, Y.; Ruan, L.-X.; Rahman, A.; Shi, S.-L. Angew. Chem., Int. Ed. 2021, 60, 5262.
[11]
(h) Wang, Z.-C.; Xie, P.-P.; Xu, Y.; Hong, X.; Shi, S.-L. Angew. Chem., Int. Ed. 2021, 60, 16077.
[11]
(i) Wang, Z.-C.; Gao, J.; Cai, Y.; Ye, X.; Shi, S.-L. CCS Chem. 2022, 4, 1169.
[11]
(j) Zhang, W.-B.; Chen, G.; Shi, S.-L. J. Am. Chem. Soc. 2022, 144, 130.
[11]
(k) Ma, J.-B.; Zhao, X.; Zhang, D.; Shi, S.-L. J. Am. Chem. Soc. 2022, 144, 13643.
[11]
(l) Liu, C.-F.; Wang, Z.-C.; Luo, X.; Lu, J.; Ko, M.; Shi, S.-L.; Koh, M. J. Nat. Catal. 2022, 5, 934.
[11]
(m) Ruan, L. X.; Sun, B.; Liu, J. -M.; Shi, S.-L. Science 2023, 379, 662.
[11]
(n) Wang, Z.-C.; Luo, X.; Zhang, J.-W. Liu, C.-F.; Koh, M. J.; Shi, S.-L. Nat. Catal. 2023, 6, 1087.
[12]
(a) Fujihara, T.; Semba, K.; Terao, J.; Tsuji, Y. Catal. Sci. Technol. 2014, 4, 1699.
[12]
(b) Bin, H.-Y.; Wei, X.; Zi, J.; Zuo, Y.-J.; Wang, T.-C.; Zhong, C.-M. ACS Catal. 2015, 5, 6670.
[12]
(c) Yoshida, H. ACS Catal. 2016, 6, 1799.
[12]
(d) Chen, J.; Guo, J.; Lu, Z. Chin. J. Chem. 2018, 36, 1075.
[12]
(e) Rej, S.; Das, A.; Panda, T. K. Adv. Synth. Catal. 2021, 363, 4818.
[13]
(a) Alam, R.; Das, A.; Huang, G.; Eriksson, L.; Himo, F.; Szabó, K. J. Chem. Sci. 2014, 5, 273.
[13]
(b) Rae, J.; Yeung, K.; McDouall, J. J. W.; Procter, D. J. Angew. Chem., Int. Ed. 2016, 55, 1102.
[13]
(c) Li, Z.; Zhang, L.; Nishiura, M.; Luo, G.; Luo, Y.; Hou, Z. ACS Catal. 2020, 10, 11685.
[13]
(d) Ozawa, Y.; Endo, K.; Ito, H. J. Am. Chem. Soc. 2021, 143, 13865.
文章导航

/