氮杂环卡宾催化醛类化合物的极性反转
收稿日期: 2024-01-12
修回日期: 2024-02-27
网络出版日期: 2024-03-20
基金资助
安徽省高校自然科学基金(2022AH052165); 安徽省科技重大专项(201903a07020003); 合肥师范学院高层次人才科研启动基金(2020rcjj35); 以及合肥师范学院自然科学重点(2021KJZD10)
N-Heterocyclic Carbene Catalyzed the Umpolung of Aldehyde Compounds
Received date: 2024-01-12
Revised date: 2024-02-27
Online published: 2024-03-20
Supported by
Natural Science Foundation of the Education Department of Anhui Province(2022AH052165); Science and Technology Major Project of Anhui Province(201903a07020003); High-Level Talents Research Project of Hefei Normal University(2020rcjj35); Key Project of Hefei Normal University(2021KJZD10)
醛类化合物是一类重要的有机化合物, 广泛用于有机合成中. 其典型反应是作为亲电试剂与各种亲核试剂发生加成反应. 羰基的亲电性限制了醛类化合物在合成中的进一步应用和发展. 自从化学家发现氰根离子能够改变苯甲醛的反应极性, 极性反转的策略备受关注. 氮杂环卡宾是一类重要的有机小分子催化剂, 在有机催化领域扮演着重要的角色. 在氮杂环卡宾催化醛类化合物的极性反转方面研究, 取得了一系列重要研究进展. 系统介绍了氮杂环卡宾催化醛类化合物的极性反转, 总结了极性反转碳原子的位置以及极性反转后发生的反应, 旨在引起化学工作者对该领域有更多的关注, 发展氮杂环卡宾催化的新模式、新反应.
赵明 , 颜瑞 , 陈虎 . 氮杂环卡宾催化醛类化合物的极性反转[J]. 有机化学, 2024 , 44(7) : 2204 -2215 . DOI: 10.6023/cjoc202401009
Aldehyde compounds are a class of important organic compounds, which are widely used in organic synthesis. The typical reaction of aldehydes is the addition reaction with various nucleophiles as electrophiles. However, the electrophilicity of aldehyde carbonyl group limits the further application and development of aldehydes in synthesis. Since chemists discovered that cyanogen ions can change the reaction polarity of benzaldehyde, the strategy of umpolung has attracted much attention. N-Heterocyclic carbene (NHC) is a kind of important small organic molecule catalyst, which plays a key role in the field of organic catalysis. A series of important advances have been made in the study of the umpolung of aldehyde compounds catalyzed by NHC. The umpolung of aldehydes catalyzed by NHCs is introduced, and the positions of carbon atoms and the reactions of umpolung are summarized with the purpose of attracting much attention to this research field, and the development of new models and reactions within NHC catalysis.
Key words: N-heterocyclic carbene; organocatalysis; aldehyde; umpolung
| [1] | Ukai, T.; Tanaka, R.; Dokawa, T. J. Pharm. Soc. Jpn. 1943, 63, 296. |
| [2] | (a) Breslow, R. J. Am. Chem. Soc. 1958, 80, 3719. |
| [2] | (b) Breslow, R.; Kim, R. Tetrahedron Lett. 1994, 35, 699. |
| [3] | For some examples: (a) Hopkinson, M. N.; Richter, C.; Schedler, M.; Glorius, F. Nature 2014, 510, 485. |
| [3] | (b) Flanigan, D. M.; Romanov-Michailidis, F.; White, N. A.; Rovis, T. Chem. Rev. 2015, 115, 9307. |
| [3] | (c) Zhang, C.; Hooper, J. F.; Lupton, D. W. ACS Catal. 2017, 7, 2583. |
| [3] | (d) Zhao, M.; Zhang, Y.-T.; Chen, J.; Zhou, L. Asian J. Org. Chem. 2018, 7, 54. |
| [3] | (e) Chen, X.-Y.; Gao, Z.-H.; Ye, S. Acc. Chem. Res. 2020, 53, 690. |
| [3] | (f) Song, R.; Jin, Z.; Chi, Y. R. Chem. Sci. 2021, 12, 5037. |
| [3] | (g) Zhen, G.; Jiang, K.; Yin, B. ChemCatChem 2022, 14, e202200099. |
| [3] | (h) Yao, T.; Li, J. Y.; Wang, J. M.; Zhao, C. G. Chin. J. Org. Chem. 2022, 42, 925. (in Chinese) |
| [3] | (姚婷, 李佳燕, 王佳明, 赵常贵, 有机化学, 2022, 42, 925.) |
| [3] | (i) Liu, Y.; Wang, Y.; Wu, X.; Chi, Y. R. Chem. Rec. 2023, 23, e202200219. |
| [3] | (j) Li, M.; Li, Y.; Li, X.; Wang, F.; Han, Y.-F. Chin. J. Chem. 2023, 41, 1431. |
| [3] | (k) Ren, Y.-Y.; Li, X.; Han, Y.-F. Acta Chim. Sinica 2023, 81, 735. (in Chinese) |
| [3] | (任妍妍, 李欣, 韩英锋, 化学学报, 2023, 81, 735.) |
| [3] | (l) Meng, Q.-D; Han, J.-H.; Pan, Y.-X.; Hao, W.; Fan, Q.-H. Acta Chim. Sinica 2023, 81, 1271. (in Chinese) |
| [3] | (孟庆端, 韩佳宏, 潘一骁, 郝伟, 范青华, 化学学报, 2023, 81, 1271.) |
| [4] | (a) Read de Alaniz, J.; Rovis, T. Synlett 2009, 1189. |
| [4] | (b) Baragwanath, L.; Rose, C. A.; Zeitler, K.; Connon, S. J. J. Org. Chem. 2009, 74, 9214. |
| [5] | For some examples: (a) Dünkelmann, P.; Kolter-Jung, D.; Nitsche, A.; Demir, A. S.; Siegert, P.; Lingen, B.; Baumann, M.; Pohl, M.; Müller, M. J. Am. Chem. Soc. 2002, 124, 12084. |
| [5] | (b) Jin, M. Y.; Kim, S. M.; Han, H.; Ryu, D. H.; Yang, J. W. Org. Lett. 2011, 13, 880. |
| [5] | (c) Jin, M. Y.; Kim, S. M.; Mao, H.; Ryu do, H.; Song, C. E.; Yang, J. W. Org. Biomol. Chem. 2014, 12, 1547. |
| [5] | (d) Haghshenas, P.; Gravel, M. Org. Lett. 2016, 18, 4518. |
| [6] | Langdon, S. M.; Wilde, M. M. D.; Thai, K.; Gravel, M. J. Am. Chem. Soc. 2014, 136, 7539. |
| [7] | (a) Sun, L.-H.; Liang, Z.-Q.; Jia, W.-Q.; Ye, S. Angew. Chem., Int. Ed. 2013, 52, 5803. |
| [7] | (b) Jia, M.-Q.; You, S.-L. ACS Catal. 2013, 3, 622. |
| [8] | Murry, J. A.; Frantz, D. E.; Soheili, A.; Tillyer, R.; Grabowski, E. J. J.; Reider, P. J. J. Am. Chem. Soc. 2001, 123, 9696. |
| [9] | Hachisu, Y.; Bode, J. W.; Suzuki, K. J. Am. Chem. Soc. 2003, 125, 8432. |
| [10] | Zhang, G.; Yang, S.; Zhang, X.; Lin, Q.; Das, D. K.; Liu, J.; Fang, X. J. Am. Chem. Soc. 2016, 138, 7932. |
| [11] | Stetter, H.; Schreckenberg, M. Angew. Chem., Int. Ed. Engl. 1973, 12, 81. |
| [12] | For some examples: (a) Jousseaume, T.; Wurz, N. E.; Glorius, F. Angew. Chem., Int. Ed. 2011, 50, 1410. |
| [12] | (b) Bhunia, A.; Yetra, S. R.; Bhojgude, S. S.; Biju, A. T. Org. Lett. 2012, 14, 2830. |
| [12] | (c) DiRocco, D. A.; Noey, E. L.; Houk, K. N.; Rovis, T. Angew. Chem., Int. Ed. 2012, 51, 2391. |
| [12] | (d) Wurz, N. E.; Daniliuc, C. G.; Glorius, F. Chem.-Eur. J. 2012, 18, 16297. |
| [12] | (e) Patra, A.; Bhunia, A.; Biju, A. T. Org. Lett. 2014, 16, 4798. |
| [12] | (f) Yetra, S. R.; Patra, A.; Biju, A. T. Synthesis 2015, 47, 1357. |
| [13] | Zhang, J.; Xing, C.; Tiwari, B.; Chi, Y. R. J. Am. Chem. Soc. 2013, 135, 8113. |
| [14] | Lin, Q.; Li, Y.; Das, D. K.; Zhang, G.; Zhao, Z.; Yang, S.; Fang, X. Chem. Commun. 2016, 52, 6459. |
| [15] | Biju, A. T.; Kuhl, N.; Glorius, F. Acc. Chem. Res. 2011, 44, 1182. |
| [16] | He, J.; Tang, S.; Liu, J.; Su, Y.; Pan, X.; She, X. Tetrahedron 2008, 64, 8797. |
| [17] | Hirano, K.; Biju, A. T.; Piel, I.; Glorius, F. J. Am. Chem. Soc. 2009, 131, 14190. |
| [18] | Bugaut, X.; Liu, F.; Glorius, F. J. Am. Chem. Soc. 2011, 133, 8130. |
| [19] | Wu, J.; Zhao, C.; Wang, J. J. Am. Chem. Soc. 2016, 138, 4706. |
| [20] | Biju, A. T.; Wurz, N. E.; Glorius, F. J. Am. Chem. Soc. 2010, 132, 5970. |
| [21] | Zhao, M.; Liu, J.-L.; Liu, H.-F.; Chen, J.; Zhou, L. Org. Lett. 2018, 20, 2676. |
| [22] | Zhao, M.; Yang, L. Q.; Xu, Y. R. Univ. Chem. 2021, 36, 105. (in Chinese) |
| [22] | (赵明, 杨立庆, 许玉荣, 大学化学, 2021, 36, 105.) |
| [23] | He, J.; Zheng, J.; Liu, J.; She, X.; Pan, X. Org. Lett. 2006, 8, 4637. |
| [24] | Lin, L.; Li, Y.; Du, W.; Deng, W.-P. Tetrahedron Lett. 2010, 51, 3571. |
| [25] | Zhao, M.; Yang, H.; Li, M.-M.; Chen, J.; Zhou, L. Org. Lett. 2014, 16, 2904. |
| [26] | Zhao, M.; Chen, J.; Yang, H.; Zhou, L. Chem.-Eur. J. 2017, 23, 2783. |
| [27] | Li, Q.-Z.; Zeng, R.; Xu, P.-S.; Jin, X.-H.; Xie, C.; Yang, Q.-C.; Zhang, X.; Li, J.-L. Angew. Chem., Int. Ed. 2023, 62, e202309572. |
| [28] | For some examples: (a) He, M.; Struble, J. R.; Bode, J. W. J. Am. Chem. Soc. 2006, 128, 8418. |
| [28] | (b) Fang, X.; Chen, X.; Chi, Y. R. Org. Lett. 2011, 13, 4708. |
| [28] | (c) Zhao, X.; Ruhl, K. E.; Rovis, T. Angew. Chem., Int. Ed. 2012, 51, 12330. |
| [28] | (d) Yang, L.; Wang, F.; Lee, R.; Lv, Y.; Huang, K. W.; Zhong, G. Org. Lett. 2014, 16, 3872. |
| [28] | (e) Gao, Z.-H.; Chen, X.-Y.; Cheng, J.-T.; Liao, W.-L.; Ye, S. Chem. Commun. 2015, 51, 9328. |
| [28] | (f) Yuan, S.; Luo, Y.; Peng, J.; Miao, M.; Xu, J.; Ren, H. Org. Lett. 2017, 19, 6100. |
| [28] | (g) Mondal, S.; Ghosh, A.; Biju, A. T. Chem. Rec. 2022, 22, e202200054. |
| [29] | Ni, Q.; Zhang, H.; Grossmann, A.; Loh, C. C. J.; Merkens, C.; Enders, D. Angew. Chem., Int. Ed. 2013, 52, 13562. |
| [30] | Davies, A. T.; Pickett, P. M.; Slawin, A. M. Z.; Smith, A. D. ACS Catal. 2014, 4, 2696. |
| [31] | Yang, X.; Sun, J.; Huang, X.; Jin, Z. Org. Lett. 2022, 24, 5474. |
| [32] | Zhang, H. M.; Gao, Z. H.; Ye, S. Org. Lett. 2014, 16, 3079. |
| [33] | Wang, X.-N.; Shen, L.-T.; Ye, S. Chem. Commun. 2011, 47, 8388. |
| [34] | Wang, X.-N.; Shen, L.-T.; Ye, S. Org. Lett. 2011, 13, 6382. |
| [35] | He, C.; Li, Z.; Zhou, H.; Xu, J. Org. Lett. 2019, 21, 8022. |
| [36] | For some examples: (a) He, M.; Bode, J. W. Org. Lett. 2005, 7, 3131. |
| [36] | (b) Chan, A.; Scheidt, K. A. J. Am. Chem. Soc. 2008, 130, 2740. |
| [36] | (c) Jang, K. P.; Hutson, G. E.; Johnston, R. C.; McCusker, E. O.; Cheong, P. H.; Scheidt, K. A. J. Am. Chem. Soc. 2014, 136, 76. |
| [36] | (d) Menon, R. S.; Biju, A. T.; Nair, V. Chem. Soc. Rev. 2015, 44, 5040. |
| [36] | (e) Li, X.-S.; Zhao, L.-L.; Wang, X.-K.; Cao, L. L.; Shi, X.-Q.; Zhang, R.; Qi, J. Org. Lett. 2017, 19, 3943. |
| [36] | (f) Zhang, Z.-Z.; Zhang, Y.; Duan, H.-X.; Deng, Z.-F.; Wang, Y.-Q. Chem. Commun. 2020, 56, 1553. |
| [36] | (g) Liu, W.; Zhang, L.; Liao, X.; Chen, J.; Huang, Y. Chem. Commun. 2022, 58, 9742. |
| [36] | (h) Dyguda, M.; Skrzyńska, A.; Sieroń, L.; Albrecht, ?. Chem. Commun. 2022, 58, 5367. |
| [37] | Burstein, C.; Glorius, F. Angew. Chem., Int. Ed. 2004, 43, 6205. |
| [38] | Sohn, S. S.; Rosen, E. L.; Bode, J. W. J. Am. Chem. Soc. 2004, 126, 14370. |
| [39] | Guo, C.; Schedler, M.; Daniliuc, C. G.; Glorius, F. Angew. Chem., Int. Ed. 2014, 53, 10232. |
| [40] | Chan, A.; Scheidt, K. A. J. Am. Chem. Soc. 2007, 129, 5334. |
| [41] | Lv, H.; Jia, W.-Q.; Sun, L.-H.; Ye, S. Angew. Chem., Int. Ed. 2013, 52, 8607. |
| [42] | Wang, L.; Li, S.; Blümel, M.; Philipps, A. R.; Wang, A.; Puttreddy, R.; Rissanen, K.; Enders, D. Angew. Chem., Int. Ed. 2016, 55, 11110. |
| [43] | Maji, B.; Ji, L.; Wang, S.; Vedachalam, S.; Ganguly, R.; Liu, X.-W. Angew. Chem., Int. Ed. 2012, 51, 8276. |
| [44] | White, N. A.; DiRocco, D. A.; Rovis, T. J. Am. Chem. Soc. 2013, 135, 8504. |
| [45] | Chen, J.; Yuan, P.; Wang, L.; Huang, Y. J. Am. Chem. Soc. 2017, 139, 7045. |
| [46] | (a) Mo, J.; Chen, X.; Chi, Y. R. J. Am. Chem. Soc. 2012, 134, 8810. |
| [46] | (b) Zhao, Y.-M.; Cheung, M. S.; Lin, Z.; Sun, J. Angew. Chem., Int. Ed. 2012, 51, 10359. |
| [46] | (c) Chen, X.; Yang, S.; Song, B.-A.; Chi, Y. R. Angew. Chem., Int. Ed. 2013, 52, 11134. |
| [46] | (d) Xu, J.; Jin, Z.; Chi, Y. R. Org. Lett. 2013, 15, 5028. |
| [46] | (e) Li, B.-S.; Wang, Y.; Jin, Z.; Zheng, P.; Ganguly, R.; Chi, Y. R. Nat. Commun. 2015, 6, 6207. |
| [46] | (f) Que, Y.; Xie, Y.; Li, T.; Yu, C.; Tu, S.; Yao, C. Org. Lett. 2015, 17, 6234. |
| [46] | (g) Xie, Y.; Que, Y.; Li, T.; Zhu, L.; Yu, C.; Yao, C. Org. Biomol. Chem. 2015, 13, 1829. |
| [46] | (h) Chen, X.-Y.; Liu, Q.; Chauhan, P.; Li, S.; Peuronen, A.; Rissanen, K.; Jafari, E.; Enders, D. Angew. Chem., Int. Ed. 2017, 56, 6241. |
| [46] | (i) Lee, A.; Zhu, J. L.; Feoktistova, T.; Brueckner, A. C.; Cheong, P. H.-Y.; Scheidt, K. A. Angew. Chem., Int. Ed. 2019, 58, 5941. |
| [47] | Shen, L.-T.; Shao, P.-L.; Ye, S. Adv. Synth. Catal. 2011, 353, 1943. |
| [48] | Chen, X.-Y.; Xia, F.; Cheng, J.-T.; Ye, S. Angew. Chem., Int. Ed. 2013, 52, 10644. |
| [49] | Wang, M.; Huang, Z.; Xu, J.; Chi, Y. R. J. Am. Chem. Soc. 2014, 136, 1214. |
| [50] | Dai, C. B.; Xia, S. Q.; Chen, X. Y.; Yang, L. M. Chin. J. Org. Chem. 2023, 43, 1084. (in Chinese) |
| [50] | (戴春波, 夏思奇, 陈晓玉, 杨丽敏, 有机化学, 2023, 43, 1084.) |
| [51] | (a) Dai, L.; Qiu, Y.; Xu, Y.-Y.; Ye, S. Cell Rep. Phys. Sci. 2020, 1, 100071. |
| [51] | (b) Balanna, K.; Madica, K.; Mukherjee, S.; Ghosh, A.; Poisson, T.; Besset, T.; Jindal, G.; Biju, A. T. Chem.-Eur. J. 2020, 26, 818. |
| [51] | (c) Dai, L.; Ye, S. ACS Catal. 2020, 10, 994. |
| [52] | Gao, Y.-Y.; Zhang, C.-L.; Jin, M.-L.; Gao, Z.-H.; Ye, S. Angew. Chem., Int. Ed. 2023, 62, e202301126. |
/
| 〈 |
|
〉 |