研究论文

(4S,4'S)-2,2'-(4,6-二苯并呋喃二基)双[4,5-二氢-4-苯基噁唑]-镍(II)配合物催化高对映选择性氰亚胺的环加成反应

  • 曹茜娴 ,
  • 由君 ,
  • 刘其业 ,
  • 刘波 ,
  • 喻艳超 ,
  • 武文菊
展开
  • 哈尔滨理工大学材料科学与化学工程学院 绿色化工技术黑龙江省高校重点实验室 哈尔滨 150080

收稿日期: 2023-11-27

  修回日期: 2024-02-27

  网络出版日期: 2024-03-28

基金资助

国家自然科学基金(22278098); 国家自然科学基金(21908034); 国家自然科学基金(22008045); 黑龙江省自然科学基金(LH2021H001); 黑龙江省自然科学基金(LH2023B013)

(4S,4'S)-2,2'-(4,6-Dibenzofurandiyl)bis[4,5-dihydro-4-phenyloxazole]-Ni(II) Complexes Catalyzed Highly Enantioselective Nitrile Imine Cycloaddition Reactions

  • Xixian Cao ,
  • Jun You ,
  • Qiye Liu ,
  • Bo Liu ,
  • Yanchao Yu ,
  • Wenju Wu
Expand
  • Key Laboratory of Green Chemical Engineering and Technology of College of Heilongjiang Province, College of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150080

Received date: 2023-11-27

  Revised date: 2024-02-27

  Online published: 2024-03-28

Supported by

National Natural Science Foundation of China ((22278098); National Natural Science Foundation of China ((21908034); National Natural Science Foundation of China ((22008045); Natural Science Foundation of Heilongjiang Province(LH2021H001); Natural Science Foundation of Heilongjiang Province(LH2023B013)

摘要

研究了Ni(II)-手性(4S,4'S)-2,2'-(4,6-二苯并呋喃二基)双[4,5-二氢-4-苯基噁唑](DBFOX/Ph)金属配合物催化氰亚胺与N-(α,β-不饱和)酰基吡唑的不对称1,3-偶极环加成反应. 该策略为制备包含四取代的一个或两个连续立体中心的手性5-3,5-二甲基吡唑酰基二氢吡唑环加成产物提供了一条简便可行的途径. 研究结果表明, 通过该反应可以高产率(97%)、高区域选择性(100%)和对映选择性(97.5% ee)地得到光学活性的环加成产物. 在放大的克级反应中产物的收率和光学活性均可以很好地保持. 此外, 手性环加成产物可经过亲核和还原等5种反应生成含有不同取代基的手性二氢吡唑衍生物.

本文引用格式

曹茜娴 , 由君 , 刘其业 , 刘波 , 喻艳超 , 武文菊 . (4S,4'S)-2,2'-(4,6-二苯并呋喃二基)双[4,5-二氢-4-苯基噁唑]-镍(II)配合物催化高对映选择性氰亚胺的环加成反应[J]. 有机化学, 2024 , 44(7) : 2315 -2332 . DOI: 10.6023/cjoc202311029

Abstract

The Ni(II)-chiral (4S,4'S)-2,2'-(4,6-dibenzofurandiyl)bis[4,5-dihydro-4-phenyloxazole] (DBFOX/Ph)-catalyzed asymmetric 1,3-dipolar cycloadditions of nitrile imines to N-α,β-unsaturated acylpyrazoles was presented. This tactic rendered a facile and feasible route to prepare the optically active tetrasubstituted 5-3,5-dimethylpyrazole acyl dihydropyrazole cycloadducts bearing one or two contiguous stereocenters in good yields (up to 97% yield) with high regioselectivities (100%) and enantioselectivities (up to 97.5% ee). Following that, chiral cycloadducts could be obtained consistently in good chemical yields with excellent enantioselectivities within the gram scale process, additionally, toward five kinds of derivatization reactions like nucleophilic and reduction for further conversion of chiral cycloadducts to related chiral dihydropyrazole derivatives encompassing different substituents.

参考文献

[1]
Poulsen, P. H.; Li, Y.; Lauridsen, V. H.; J?rgensen, D. K. B.; Palazzo, T. A.; Meazza, M.; J?rgensen, K. A. Angew. Chem., Int. Ed. 2018, 57, 10661.
[2]
Wang, K.; Xiao, Y. Chirality 2021, 33, 424.
[3]
Wang, M.; Zhang, Z.; Zhang, W. Acc. Chem. Res. 2022, 55, 2708.
[4]
Hilpert, L. J.; Sieger, S. V.; Haydl, A. M.; Breit, B. Angew. Chem., Int. Ed. 2019, 131, 3416.
[5]
Zengeya, T. T.; Garlick, J. M.; Kulkarni, R. A.; Miley, M.; Roberts, A. M.; Yang, Y.; Crooks, D. R.; Sourbier, C.; Linehan, W. M.; Meier, J. L. J. Am. Chem. Soc. 2016, 138, 15813.
[6]
Nunes, R. C.; Ribeiro, C. J. A.; Monteiro, ?.; Rodrigues, C. M. P.; Amaral, J. D.; Santos, M. M. M. Eur. J. Med. Chem. 2017, 139, 168.
[7]
Ahsan, M. J.; Ali, A.; Ali, A.; Thiriveedhi, A.; Bakht, M. A.; Yusuf, M.; Salahuddin; Afzal, O.; Altamimi, A. S. A. ACS Omega 2022, 7, 38207.
[8]
Fahrni, C. J.; Yang, L.; VanDerveer, D. G. J. Am. Chem. Soc. 2003, 125, 3799.
[9]
Chen, J. R.; Dong, W. R.; Candy, M.; Pan, F. F.; Jo?rres, M.; Bolm, C. J. Am. Chem. Soc. 2012, 134, 6924.
[10]
Thomson, C. J.; Barber, D. M.; Dixon, D. J. Angew. Chem., Int. Ed. 2019, 131, 2491.
[11]
Yang, C. J.; Zhang, C.; Gu, Q. S.; Fang, J. H.; Su, X. L.; Ye, L.; Sun, Y.; Tian, Y.; Li, Z. L.; Liu, X. Y. Nat. Catal. 2020, 3, 539.
[12]
Hu, F.; Zhang, H.; Chu, Y.; Hui, X. P. Org. Chem. Front. 2022, 9, 2734.
[13]
Matiadis, D. Adv. Synth. Catal. 2023, 365, 1934.
[14]
Yamashita, Y.; Kobayashi, S. J. Am. Chem. Soc. 2004, 126, 11279.
[15]
Wang, C.; Wen, D.; Chen, H.; Deng, Y.; Liu, X.; Liu, X.; Wang, L.; Gao, F.; Guo, Y.; Sun, M.; Wang, K.; Yan, W. Org. Biomol. Chem. 2019, 17, 5514.
[16]
Hashimoto, T.; Takiguchi, Y.; Maruoka, K. J. Am. Chem. Soc. 2013, 135, 11473.
[17]
Zhang, D. Y.; Shao, L.; Xu, J.; Hu, X. P. ACS Catal. 2015, 5, 5026.
[18]
Deepthi, A.; Acharjee, N.; Sruthi, S. L.; Meenakshy, C. B. Tetrahedron 2022, 116, 132812.
[19]
Song, L.; Lai, Y.; Li, H.; Ding, J.; Yao, H.; Su, Q.; Huang, B.; Ouyang, M. A.; Tong, R. J. Org. Chem. 2022, 87, 10550.
[20]
Sibi, M. P.; Stanley, L. M.; Jasperse, C. P. J. Am. Chem. Soc. 2005, 127, 8276.
[21]
Wang, G.; Liu, X.; Huang, T.; Kuang, Y.; Lin, L.; Feng, X. Org. Lett. 2013, 15, 76.
[22]
Gerten, A. L.; Slade, M. C.; Pugh, K. M.; Stanley, L. M. Org. Biomol. Chem. 2013, 11, 7834.
[23]
Pellissier, H. Tetrahedron 2007, 63, 3235.
[24]
Hashimoto, T.; Maruoka, K. Chem. Rev. 2015, 115, 5366.
[25]
Nishiura, Y.; Gonzalez, K. J.; Cusumano, A. Q.; Stoltz, B. M. Org. Lett. 2023, 25, 6469.
[26]
Wu, D.; Qiu, J.; Li, C.; Yuan, L.; Yin, H.; Chen, F. X. J. Org. Chem. 2019, 85, 934.
[27]
Wang, C. J.; Sun, J.; Zhou, W.; Xue, J.; Ren, B. T. Zhang, G. Y. Mei, Y. L. Deng, Q. H. Org. Lett. 2019, 21, 7315.
[28]
Shen, X.; Li, Y.; Wen, Z.; Cao, S.; Hou, X.; Gong, L. Chem. Sci. 2018, 9, 4562.
[29]
Itoh, K.; Sibi, M. P. Org. Biomol. Chem. 2018, 16, 5551.
[30]
Kanemasa, S.; Oderaotoshi, Y.; Tanaka, J.; Wada, E. J. Am. Chem. Soc. 1998, 120, 12355.
[31]
Yang, X.; Cheng, F.; Kou, Y. D.; Pang, S.; Shen, Y. C.; Huang, Y. Y.; Shibata, N. Angew. Chem., Int. Ed. 2017, 129, 1532.
[32]
Liu, X.; Li, M.; You, J.; Liu, B. Chin. J. Org. Chem. 2017, 37, 86. (in Chinese)
[32]
(刘迅绅, 李美美, 由君, 刘波, 有机化学, 2017, 37, 86.)
[33]
Ono, F.; Ohta, Y.; Hasegawa, M.; Kanemasa, S. Tetrahedron Lett. 2009, 50, 2111.
[34]
Zhang, J.; Liu, X.; Wang, R. Chem- Eur. J. 2014, 20, 4911.
[35]
Zhang, Y.; Liao, Y.; Liu, X.; Yao, Q.; Zhou, Y.; Lin, L.; Feng, X. Chem.-Eur. J. 2016, 22, 15119.
[36]
Yao, Q.; Wang, Z.; Zhang, Y.; Liu, X.; Lin, L.; Feng, X. J. Org. Chem. 2015, 80, 5704.
[37]
Liu, X. H.; Ruan, B. F.; Li, J.; Chen, F. H.; Song, B. A.; Zhu, H. L.; Bhadury, P. S.; Zhao, J. Mini-Rev. Med. Chem. 2011, 11, 771.
[38]
Kü?ükgüzel, ?. G.; ?enkarde?, S. Eur. J. Med. Chem. 2015, 97, 786.
[39]
Liu, H.; Jia, H.; Wang, B.; Xiao, Y.; Guo, H. Org. Lett. 2017, 19, 4714.
[40]
Wang, Y.; Zhang, P.; Di, X.; Dai, Q.; Zhang, Z. M.; Zhang, J. Angew. Chem., Int. Ed. 2017, 129, 16121.
[41]
Lu, T. Molclus program, Version 1. 5,
[42]
Stewart, J. J. P. J. Comput.-Aided Mol. Des. 1990, 4, 1.
[43]
Hohenberg, P.; Kohn, W. Phys. Rev. 1964, 136, B864.
[44]
Kohn, W.; Sham, L. J. Phys. Rev. 1965, 140, A1133.
[45]
Grimme, S.; Antony. J.; Ehrlich, S.; Krieg, H. J. Chem. Phys. 2010, 132, 154104.
[46]
Petersson, G. A.; Bennett, A.; Tensfeldt, T. G; Al-Laham, M. A.; Shirley, W. A.; Mantzaris, J. J. Chem. Phys. 1988, 89, 2193.
[47]
Weigend, F.; Ahlrichs, R. Phys. Chem. Chem. Phys. 2005, 7, 3297.
[48]
Lu, T.; Chen, F. J. Comput. Chem. 2012, 33, 580.
文章导航

/