可见光催化不对称Minisci反应研究进展
收稿日期: 2023-12-16
修回日期: 2024-02-12
网络出版日期: 2024-03-28
基金资助
湖南大学化学生物传感与计量学国家重点实验室开放项目(20230767); 温州市基础性科研(G20220020)
Developments in Visible Light Catalyzed Asymmetric Minisci Reactions
Received date: 2023-12-16
Revised date: 2024-02-12
Online published: 2024-03-28
Supported by
Open Project of State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University(20230767); Basic Scientific Research Projects in Wenzhou City(G20220020)
氮杂芳烃是诸多天然产物、药物和有机材料中常见的结构单元之一, 因此以Minisci反应为代表的对氮杂芳烃进行选择性官能团化修饰一直以来是化学家们的关注热点. 同时, 近年来光催化作为一种绿色安全、洁净环保和可再生的催化方式掀起了新的研究热潮. 尽管近年来光催化Minisci反应已经有相关综述报道, 但是对于不对称Minisci反应却一直鲜有涉猎. 将从自由基前驱体的分类、不同的反应途径等方面概述近年来可见光催化不对称Minisci反应的研究进展, 同时也对今后其发展方向进行了展望.
关键词: 不对称Minisci反应; 光催化; 含氮芳环; 自由基
李文雅 , 王煜 , 陈江琦 , 史丹 , 张良 , 余小春 , 王正军 . 可见光催化不对称Minisci反应研究进展[J]. 有机化学, 2024 , 44(7) : 2110 -2123 . DOI: 10.6023/cjoc202312016
N-Heterocyclic aromatics are among the most prevalent motifs in natural products, pharmaceuticals, and organic materials. Therefore, the selective functionalization of N-heterocyclic aromatics, represented by the Minisci reaction, has always been a hot topic for chemists. Meanwhile, in recent years, photocatalysis has sparked a new research trend as a green, safe, clean, and renewable catalytic method. Although a review has been conducted on photoinduced Minisci reactions in recent years, the exploration of asymmetric Minisci reactions is limited. The research progress on visible-light photocatalytic asymmetric Minisci reactions in recent years from the classification of free radical precursors and different reaction pathways is summarized. Furthermore, prospects for future development are also discussed.
| [1] | Welsch, M. E.; Snyder, S. A.; Stockwell, B. R.; Curr. Opin. Chem. Biol. 2010, 14, 347. |
| [2] | Bhutani, P.; Joshi, G.; Raja, N.; Bachhav, N.; Rajanna, P. K.; Bhutani, H; Paul, A. T.; Kumar, R. J. Med. Chem. 2021, 64, 2339. |
| [3] | DiRocco, D. A.; Dykstra, K.; Krska, S.; Vachal, P.; Conway D. V.; Tudge, M. Angew. Chem., Int. Ed. 2014, 53, 4802 |
| [4] | Proctor Rupert, S. J.; Davis, H. J.; Phipps, R. J. Science 2018, 360, 419. |
| [5] | Antonchick, A. P.; Burgmann, L. Angew. Chem., Int. Ed. 2013, 52, 3267. |
| [6] | Matcha, K.; Antonchick, A. P.; Burgmann, L. Angew. Chem., Int. Ed. 2013, 52, 2082. |
| [7] | Siddaraju, Y.; Lamani, M.; Prabhu, K. R. J. Org. Chem. 2014, 79, 3856. |
| [8] | Minisci, F.; Bernardi, R.; Bertini, F.; Galli, R.; Perchinummo, M. Tetrahedron 1971, 27, 3575. |
| [9] | Yan, M.; Lo, C. J.; Edwards, T. J.; Baran, S. P. J. Am. Chem. Soc. 2016, 138, 12714. |
| [10] | Mai, D. N.; Baxter, R. D. Org. Lett. 2016, 18, 3738. |
| [11] | Murakami, K.; Yamada, S.; Kaneda, T.; Itami, K. Chem. Rev. 2017, 117, 9302. |
| [12] | Liu, X.-L..; Jiang, L.-B.; Luo, M.-P.; Ren, Z.; Wang, S.-G. Org. Chem. Front. 2022, 9, 265. |
| [13] | Dong, J.; Lyu, X.; Wang, Z.; Wang, X.; Song, H.; Liu, Y.; Wang, Q. Chem. Sci. 2019, 10, 976. |
| [14] | Zhidkov, M. E.; Kaminskii, V. A. Tetrahedron Lett. 2013, 54, 3530. |
| [15] | Jin, J.; Macmillan, D. W. C. Angew. Chem., Int. Ed. 2014, 54, 1565. |
| [16] | Liang, X.-A.; Niu, L.; Wang, S.; Liu, J.; Lei, A. Org. Lett. 2019, 21, 2441. |
| [17] | Chen, H.; Fan, W.; Yuan, X.-A.; Yu, S. Nat. Commun. 2019, 10, 4743. |
| [18] | Ji, X.; Liu, Q.; Wang, Z.; Wang, P.; Deng, G.-J.; Huang, H. Green Chem. 2020, 22, 8233. |
| [19] | Pan, Z.-T.; Shen, L-M.; Dagnaw, F. W.; Zhong, J.-J.; Jian, J.-X.; Tong, Q.-X. Chem. Commun. 2023, 59, 1637. |
| [20] | Gao, Y.-Y.; Wu, Z.-G.; Yu, L.; Wang, Y.; Pan, Y. Angew. Chem., Int. Ed. 2020, 59, 10859. |
| [21] | Río-Rodríguez, R. D.; Fragoso-Jarillo, L.; Garrido-Castro, A. F.; Maestro, M. C.; Fernández-Salas, J. A.; Alemán, J. Chem. Sci. 2022, 13, 6512. |
| [22] | Mo, Y.-M.; Lu, Z.-H.; Rughoobur, G.; Patil, P.; Gershenfeld, N.; Akinwande, A. I.; Buchwald, S. L.; Jensen, K. F. Science 2020, 368, 1352. |
| [23] | Wang, P.; Yang, Z.-L.; Wang, Z.-W.; Xu, C.-Y.; Huang, L.; Wang, S.-C.; Zhang, H.; Lei, A.-W. Angew. Chem., Int. Ed. 2019, 58, 15747. |
| [24] | Ding, H.; Xu, K.; Zeng, C.-C. J. Catal. 2020, 381, 38. |
| [25] | Xu, P.; Chen, P.-Y.; Xu, H.-C. Angew. Chem., Int. Ed. 2020, 59, 14275. |
| [26] | Tan, Z.; He, X.; Xu, K.; Zeng, C. ChemSusChem 2022, 15, e2021023. |
| [27] | Wang, Z.-J.; Zheng, S.; Matsui, J. K.; Lu, Z.-P.; Molander, G. A. Chem. Sci. 2019, 10, 4389. |
| [28] | Li, D.-S.; Liu, T.; Hong, Y.; Cao, C.-L.; Wu, J.; Deng, H.-P. ACS Catal. 2022, 12, 4473. |
| [29] | Calcaterra, A.; D’Acquarica, I. J. Pharm. Biomed. Anal. 2018, 147, 323. |
| [30] | Leonori, L. D.; Aggarwal, V. K. J. Am. Chem. Soc. 2015, 137, 10958. |
| [31] | Zuo, Z.; Cong, H.; Li, W.; Choi, J.; Fu, G. C.; MacMillan, D. W. C. J. Am. Chem. Soc. 2016, 138, 1832. |
| [32] | Baco?, P. D.; Lahdenper?, A. S. K.; Phipps, R. J. Acc. Chem. Res. 2023, 56, 2037. |
| [33] | Jin, J.; MacMillan, D. W. C. Nature 2015, 525, 87. |
| [34] | Jin, J.; MacMillan, D. W. C. Angew. Chem., Int. Ed. 2015, 54, 1565. |
| [35] | Zheng, D.; Studer, A. Angew. Chem., Int. Ed. 2019, 58, 15803. |
| [36] | Garza-Sanchez, R. A.; Tlahuext-Aca, A.; Tavakoli, G.; Glorius, F. ACS Catal. 2017, 7, 4057. |
| [37] | Li, G. X.; Morales-Rivera, C. A.; Wang, Y.; Gao, F.; He, G.; Liu, P.; Chen, G. Chem. Sci. 2016, 7, 6407. |
| [38] | Dong, J.; Wang, X.; Song, H.; Liu, Y.; Wang, Q. Adv. Synth. Catal. 2020, 362, 2155. |
| [39] | Cheng, W.-M.; Shang, R.; Fu, Y. ACS Catal. 2017, 7, 907. |
| [40] | Rupert, S. J.; Davis, H. J.; Phipps, R. J. Science 2018, 360, 419. |
| [41] | Liu, X.; Liu, Y.; Chai, G.; Qiao, B.; Zhao, X.; Jiang, Z. Org. Lett. 2018, 20, 6298. |
| [42] | Reid, J. P.; Rupert, S. J.; Sigman, M. S.; Phipps, R. J. J. Am. Chem. Soc. 2019, 141, 19178. |
| [43] | Fu, M.-C.; Shang, R.; Zhao, B.; Wang, B.; Fu, Y. Science 2019, 363, 1429. |
| [44] | Guo, J.; Xie, Y.; Lai, Z. -M.; Weng, J.; Chan, A. S. C.; Lu, G. ACS Catal. 2022, 12, 13065. |
| [45] | Liang, D.; Chen, J.-R.; Tan, L.-P.; He, Z.-W.; Xiao, W.-J. J. Am. Chem. Soc. 2022, 144, 6040. |
| [46] | Liang, D.; Xiao, W. J.; Lakhdar, S.; Chen, J. O. Green Synth. Catal. 2022, 3, 212. |
| [47] | Luo, M.-P.; Gua, Y.-J.; Wang, S.-G. Chem. Sci. 2023, 14, 251. |
| [48] | Huang, C.-Y.; Li, J.; Liu, W.; Li, C.-J. Chem. Sci. 2019, 10, 5018. |
| [49] | Rupert, S. J.; Chuentragool, P.; Colgan, A. C.; Phipps, R. J. J. Am. Chem. Soc. 2021, 143, 4928. |
| [50] | Li, C.; Chen, B.; Ma, X. D.; Mo, X. L.; Zhang, G. Z. Angew. Chem., Int. Ed. 2020, 60, 2130. |
| [51] | Niu, L.-B.; Liu, J.-M.; Liang, X.-A.; Wang, S.-C.; Lei, A.-W. Nat. Commun. 2019, 10, 467. |
| [52] | Colgan, A. C.; Rupert, S. J.; Gibson, D. C.; Chuentragool, P.; Lahdenper?, A. S. K.; Ermanis, K.; Phipps, R. J. Angew. Chem., Int. Ed. 2022, 61, e202200266. |
| [53] | Zheng, D. Q.; Studer, A. Angew. Chem., Int. Ed. 2019, 58, 15803. |
| [54] | Ma, C. R.; Shen, J. Y.; Qu, C. F.; Shao, T. J.; Cao, S. S.; Yin, Y. L.; Zhao, X. W.; Jiang, Z. Y. J. Am. Chem. Soc. 2023, 145, 36, 20141. |
/
| 〈 |
|
〉 |