综述与进展

碳酸亚乙烯酯: 有机合成化学中的多功能合成子

  • 林雨 ,
  • 付海峰 ,
  • 曹华 ,
  • 刘想
展开
  • 广东药科大学医药化工学院 广东省化妆品工程技术研究中心 中山 528458

收稿日期: 2024-01-30

  修回日期: 2024-03-05

  网络出版日期: 2024-03-28

基金资助

广东药科大学启动基金(51361303); 广东药科大学启动基金(51361304)

Vinylene Carbonate: A Versatile Synthon in Organic Synthetic Chemistry

  • Yu Lin ,
  • Haifeng Fu ,
  • Hua Cao ,
  • Xiang Liu
Expand
  • School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458

Received date: 2024-01-30

  Revised date: 2024-03-05

  Online published: 2024-03-28

Supported by

Start-Up Grant from Guangdong Pharmaceutical University(51361303); Start-Up Grant from Guangdong Pharmaceutical University(51361304)

摘要

近年来, 碳酸亚乙烯酯已成为一种新型、理想的多功能合成子, 广泛应用于丰富多样的有机合成转化中, 特别是在过渡金属催化的C—H官能化领域, 可用于构建含碳、杂环骨架的目标分子. 自2009年Nishii和Miura首次报道了碳酸亚乙烯酯作为“乙炔醇替代物”参与偶联反应以来, 其作为“乙炔替代物”、“C1合成子”、“酰甲基化试剂”及其它功能试剂的应用被陆续报道. 这些进展不仅凸现了碳酸亚乙烯酯的多功能转化性, 也为复杂化合物的合成提供新思路. 根据碳酸亚乙烯酯在合成化学中的不同反应角色, 概述了近年来碳酸亚乙烯酯的最新研究进展, 并对其未来发展提出展望.

本文引用格式

林雨 , 付海峰 , 曹华 , 刘想 . 碳酸亚乙烯酯: 有机合成化学中的多功能合成子[J]. 有机化学, 2024 , 44(7) : 2147 -2173 . DOI: 10.6023/cjoc202401036

Abstract

In recent years, vinylene carbonate has become a new and ideal multifunctional synthon, which is widely used in a variety of organic transformations. Especially in the field of transition metal-catalyzed C—H functionalization, it can be used to construct target molecules containing carbon and heterocyclic skeletons. Since Nishii and Miura first reported that vinylene carbonate participates in coupling reactions as an “ethynol surrogate” in 2009, it has been successively reported as an “acetylene surrogate”, “C1 synthon”, “acylmethylation reagent”, and others. These developments not only highlight the multifunctional transformation of vinylene carbonate, but also provide new ideas for the synthesis of complex compounds. The latest research progress of vinylene carbonate in recent years is summarized and the prospects for its future development based on the different reaction roles of vinylene carbonate in synthetic chemistry are proposed.

参考文献

[1]
(a) Newman, M. S.; Addor, R. W. J. Am. Chem. Soc. 1955, 77, 3789.
[1]
(b) Arjona, O.; Medel, R.; Plumet, J.; Herrera, R.; JiménezVázquez, H. A.; Tamariz, J. J. Org. Chem. 2004, 69, 2348.
[1]
(c) Afarinkia, K. Bearpark, M. J.; Ndibwami, A. J. Org. Chem. 2005, 70, 1122.
[1]
(d) Tabanelli, T.; Giliberti, C.; Mazzoni, R.; Cucciniello, R.; Cavani, F. Green Chem. 2019, 21, 329.
[2]
(a) Ding, L.; Li, Y.; Li, Y.; Liang, Y.; Huang, J. Eur. Polym. J. 2001, 37, 2453.
[2]
(b) Rzhekhina, E. K. Polym. Sci., Ser. D 2012, 5, 86.
[2]
(c) Chauveau, C.; Fouquay, S.; Michaud, G.; Simon, F.; Carpentier, J.-F.; Guillaume, S. M. Eur. Polym. J. 2019, 116, 144.
[2]
(d) Dobi, Z.; Reddy, B. N.; Renders, E.; Van Raemdonck, L.; Mensch, C.; De Smet, G.; Chen, C.; Bheeter, C.; Sergeyev, S.; Herrebout, W. A.; Maes, B. U. W. ChemSusChem 2019, 12, 3103.
[3]
(a) Cui, X.; Chauvin, R.; Pi, C.; Wu, Y.; Cui, X. Adv. Synth. Catal. 2023, 365, 3400.
[3]
(b) Ge, Y.; Yan, Q.; Nan, J. Org. Chem. Front. 2023, 10, 5717.
[4]
Hara, H.; Hirano, M.; Tanaka, K. Org. Lett. 2009, 11, 1337.
[5]
(a) Muraoka, T.; Kinbara, K.; Aida, T. Nature 2006, 440, 512.
[5]
(b) Banghart, M. R.; Mourot, A.; Fortin, D. L.; Yao, J. Z.; Kramer, R. H.; Trauner, D. Angew. Chem., Int. Ed. 2009, 48, 9097.
[5]
(c) Puntoriero, F.; Ceroni, P.; Balzani, V.; Bergamini, G.; Voegtle, F. J. Am. Chem. Soc. 2007, 129, 10714.
[5]
(d) DiCesare, N.; Lakowicz, J. R. Org. Lett. 2001, 3, 3891.
[5]
(e) Hunger, K. Industrial Dyes Chemistry, Properties, Applications, Wiley-VCH, Weinheim, 2003.
[5]
(f) Burland, D. M.; Miller, R. D.; Walsh, C. A. Chem. Rev. 1994, 94, 31.
[5]
(g) Nguyen, T. H. L.; Gigant, N.; Joseph, D. ACS Catal. 2018, 8, 1546.
[6]
Park, M. S.; Moon, K.; Oh, H.; Lee, J. Y.; Ghosh, P.; Kang, J. Y.; Park, J. S.; Mishra, N. K.; Kim, I. S. Org. Lett. 2021, 23, 5518.
[7]
Wang, L.; Shao, Y.; Chen, F.; Qian, P.-C.; Cheng, J. Chin. J. Org. Chem. 2022, 42, 242. (in Chinese)
[7]
(王璐, 邵莺, 陈帆, 钱鹏程, 成江, 有机化学, 2022, 42, 242.)
[8]
Wang, Z.-H.; Wang, H.; Wang, H.; Li, L.; Zhou, M.-D. Org. Lett. 2021, 23, 995.
[9]
Kim, S.; Park, H. K.; Kang, J. Y.; Mishra, N. K.; Kim, I. S. Synthesis 2022, 54, A.
[10]
Song, J.-L.; Xiao, L.; Chen, S.-Y.; Zheng, Y.-C.; Liu, Y.-Z.; Zhang, S.-S.; Shu, B. Adv. Synth. Catal. 2023, 365, 1457.
[11]
(a) Liu, X.; Li, W.; Jiang, W.; Lu, H.; Liu, J.; Lin, Y.; Cao, H. Org. Lett. 2022, 22, 613.
[11]
(b) Zhu, B.; Li, W.; Chen, H.; Wu, M.; Hu, J.; Cao, H.; Liu, X. Adv. Synth. Catal. 2022, 364, 2911.
[11]
(c) Shi, X.; Lin, Y.; Wei, J.; Zhao, L.; Guo, P.; Cao, H.; Liu, X. Org. Chem. Front. 2023, 10, 2892.
[12]
Li, W.; Zhang, M.; Yan, J.; Ni, L.; Cao, H.; Liu, X. Org. Chem. Front. 2022, 9, 2529.
[13]
Ghosh, K.; Nishii, Y.; Miura, M. ACS Catal. 2019, 9, 11455.
[14]
Mihara, G.; Ghosh, K.; Nishii, Y.; Miura, M. Org. Lett. 2020, 22, 5706.
[15]
Ghosh, K.; Nishii, Y.; Miura, M. Org. Lett. 2020, 22, 3547.
[16]
Hu, Y.; Nan, J.; Yin, J.; Huang, G.; Ren, X.; Ma, Y. Org. Lett. 2021, 23, 8527.
[17]
Wang, L.; Jiang, K.; Zhang, N.; Zhang, Z. Asian J. Org. Chem. 2021, 10, 1671.
[18]
Huang, X.; Xu, Y.; Li, J.; Lai, R.; Luo, Y.; Wang, Q.; Yang, Z.; Wu, Y. Chin. Chem. Lett. 2021, 32, 3518.
[19]
Liu, M.; Yan, K.; Wen, J.; Liu, W.; Wang, M.; Wang, L.; Wang, X. Adv. Synth. Catal. 2022, 364, 512.
[20]
Hu, W.; Pi, C.; Hu, D.; Han, X.; Wu, Y.; Cui, X. Org. Lett. 2022, 24, 2613.
[21]
Li, N.; Zhang, X.; Fan, X. Tetrahedron Lett. 2022, 103, 153984.
[22]
Li, X.; Huang, T.; Song, Y.; Qi, Y.; Li, L.; Li, Y.; Xiao, Q.; Zhang, Y. Org. Lett. 2020, 22, 5925.
[23]
Yu, Y.; Wang, Y.; Li, B.; Tan, Y.; Zhao, H.; Li, Z.; Zhang, C.; Ma, W. Adv. Synth. Catal. 2022, 364, 838.
[24]
Li, Y.; Wang, H.; Li, Y.; Li, Y.; Sun, Y.; Xia, C.; Li, Y. J. Org. Chem. 2021, 86, 18204.
[25]
Zhao, L.; Li, W.; Liu, J.; Ni, L.; Liu, Z.; Shen, H.; Cao, H.; Liu, X. Org. Biomol. Chem. 2022, 20, 9604.
[26]
Wang, C.; Fan, X.; Chen, F.; Qian, P.-C.; Cheng, J. Chem. Commun. 2021, 57, 3929.
[27]
Nan, J.; Yin, J.; Gong, X.; Hu, Y.; Ma, Y. Org. Lett. 2021, 23, 8910.
[28]
Zhang, W.; Li, C.; Wang, B.; Gao, H.; Li, H. Chin. J. Org. Chem. 2022, 42, 172. (in Chinese)
[28]
(张文杰, 李超, 王博超, 高慧, 李洪基, 有机化学, 2022, 42, 172.)
[29]
Nan, J.; Ma, Q.; Yin, J.; Liang, C.; Tian, L.; Ma, Y. Org. Chem. Front. 2021, 8, 1764.
[30]
Kato, M.; Ghosh, K.; Nishii, Y.; Miura, M. Chem. Commun. 2021, 57, 8280.
[31]
Hu, W.; Wang, X.; Yu, X.; Zhu, X.; Hao, X.-Q.; Song, M.-P. Asian J. Org. Chem. 2021, 10, 2557.
[32]
Li, B.-S.; Guo, H.-X.; Sun, W.; Sun, M. Tetrahedron Lett. 2022, 99, 153854.
[33]
Kumara, P.; Kapur, M. Chem. Commun. 2022, 58, 4476.
[34]
Liu, M.; Yan, K.; Wen, Ji.; Shang, W.; Sui, X.; Wang, X. Adv. Synth. Catal. 2022, 364, 1580.
[35]
Wang, Z.; Xue, F.; Hayashi, T. Angew. Chem., Int. Ed. 2019, 58, 11054.
[36]
Hu, F.-P.; Zhang, X.-G.; Wang, M.; Wang, H.-S.; Huang, G.-S. Chem. Commun. 2021, 57, 11980.
[37]
(a) Cai, X.; Song, X.; Yang, X.; Zhang, X.; Fan, X. Org. Chem. Front. 2023, 10, 1015.
[37]
(b) Li, X.; Cheng, H.; Shao, J.; Zhang, G.; Zhang, S. Org. Lett. 2024, 26, 1304.
文章导航

/