研究论文

可见光诱导铁催化氮杂环的羟甲基化

  • 傅艳华 ,
  • 徐畅 ,
  • 张超 ,
  • 王怡莎 ,
  • 冯高峰
展开
  • 绍兴文理学院 浙江省精细化学品绿色替代技术研究重点实验室 浙江绍兴 312000

收稿日期: 2023-12-02

  修回日期: 2024-02-08

  网络出版日期: 2024-04-10

基金资助

国家自然科学基金(21676166); 国家自然科学基金(21302130)

Visible-Light Induced Iron-Catalyzed Hydroxymethylation of N-Heterocycles

  • Yanhua Fu ,
  • Chang Xu ,
  • Chao Zhang ,
  • Yisha Wang ,
  • Gaofeng Feng
Expand
  • Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, Zhejiang 312000

Received date: 2023-12-02

  Revised date: 2024-02-08

  Online published: 2024-04-10

Supported by

National Natural Science Foundation of China(21676166); National Natural Science Foundation of China(21302130)

摘要

以甲醇为羟甲基化试剂, 发展了一种铁催化可见光诱导氮杂环羟甲基化新方法. 以FeCl3为催化剂, 2-甲基异烟酸为配体, 对甲苯磺酸为酸, 空气为氧化剂, 甲醇和水为溶剂, 在可见光(427 nm)诱导下实现了多种取代喹啉、异喹啉、吡啶、苯并噻唑和伏立康唑的羟甲基化, 展现了该方法优秀的底物普适性. 该方法具有反应条件绿色、反应原子经济性好及操作简单等优点, 在药物分子或生物活性分子后续结构修饰中具有潜在的应用价值.

本文引用格式

傅艳华 , 徐畅 , 张超 , 王怡莎 , 冯高峰 . 可见光诱导铁催化氮杂环的羟甲基化[J]. 有机化学, 2024 , 44(7) : 2265 -2273 . DOI: 10.6023/cjoc202312025

Abstract

A new strategy for iron-catalyzed visible-light induced hydroxymethylation of N-heterocycles with methanol under mild conditions was developed. By employing FeCl3 as the catalyst, 2-methylisonicotinic acid as the ligand, TsOH as the acid, air as the oxidant, and aqueous MeOH as the solvent, varieties of substituted quinolines, isoquinolines, pyridines, benzothiazole and voriconazole were hydroxymethylated smoothly in good to excellent yields, exhibiting good substrate scope. This strategy features green reaction conditions, excellent atom-economy and simple operations. It has potential applicable value in late-stage structure modification of drug molecule.

参考文献

[1]
(a) Docherty, J. H.; Lister, T. M.; Mcar thur, G.; Findlay, M. T.; Domingo-Legarda, P.; Kenyon, J.; Choudhary, S.; Larrosa, I. Chem. Rev. 2023, 123, 7692.
[1]
(b) K.; Guin, S.; Maiti, S.; Biswas, J. P.; Porey, S.; Maiti, D. Chem. Rev. 2022, 122, 5682.
[1]
(c) Capaldo, L.; Ravelli, D.; Fagnoni, M. Chem. Rev. 2022, 122, 1875.
[2]
For some examples, see: (a) Xie, X.; Qiao, K.; Shao, B.; Jiang, W.; Shi, L. Org. Lett. 2023, 25, 4264.
[2]
(b) Zhao, Y.; Xia, W. Org. Biomol. Chem. 2019, 17, 4951.
[2]
(c) Li, C.-J. Chin. J. Chem. 2022, 40, 838.
[3]
For selected reviews, see: (a) Wang, C.-S.; Dixneuf, P. H.; Jean-Fran?ois Soulé, J.-F. Chem. Rev. 2018, 118, 7532.
[3]
(b) Holmberg-Douglas, N.; Nicewicz, D. A. Chem. Rev. 2022, 122, 1925.
[3]
(c) Bellotti, P.; Huang, H.-M.; Faber, T.; Glorius, F. Chem. Rev. 2023, 123, 4237.
[3]
(d) Li, Z.; Jin, J.; Huang, S. Chin. J. Org. Chem. 2020, 40, 563. (in Chinese)
[3]
(李祯龙, 金健, 黄莎华, 有机化学, 2020, 40, 563.)
[4]
(a) Huo, Y.; Chen, B.; Xu, Z.; Ren, X.; Qi, R.; Wang, C.; Org. Chem. Front. 2024, 11, 205.
[4]
(b) Zhang, L.; He, S.; Hou, J.; Ye, M.; Chen, J.; Lv, G.; Huang, T.; Yang, Z.; Wu, Y. Chem. Commun. 2023, 59, 13759.
[4]
(c) Hou, J.-Y.; Zhang, L.; He, S.-Y.; Ye, M.-L.; Chen, J.; Huang, T.-L.; Lv, L.; Yang, Z.-Z.; Wu, Y. Org. Chem. Front. 2023, 10, 6200.
[4]
(d) Xu, C.; Shen, F.-Q.; Feng, G.; Jin, J. Org. Lett. 2021, 23, 3913.
[5]
(a) Sun, C.-L.; Li, B.-J.; Shi, Z.-J. Chem. Rev. 2011, 111, 1293.
[5]
(b) Chen, X.; Meng, C.; Li, M.; Chu, S.; Zhu, X.; Xu, K.; Liu, L.; Wang, T.; Zhang, F.; Li, F. Chin. J. Org. Chem. 2023, 43, 2800.
[5]
(c) Chen, X.; Geng, Y.; Zhu, Y.; Zou, D.; Wu, Y.; Wu, Y. Adv. Synth. Catal. 2024, 366, 214.
[5]
(d) Cattani, M. S. S.; Cera, G. Chem.-Asian J. 2024, 19, e202300897.
[6]
For selected recent examples, see: (a) Jang, Y. J.; An, H.; Choi, S.; Hong, J.; Lee, S. H.; Ahn, K.-H.; You, Y.; Kang, J. Org. Lett. 2022, 24, 4479.
[6]
(b) Ohmura, S.; Katagiri, K.; Kato, H.; Horibe, T.; Miyakawa, S.; Hasegawa, J.; Ishihara, K. J. Am. Chem. Soc. 2023, 145, 15054.
[6]
(c) Yuan, J.; Shen, L.; Guo, N.; Yin, Y.; Yang, P.; Yang, L.; Xiao, Y.; Zhang, S. J. Org. Chem. 2023, 88, 16598.
[7]
For selected recent reviews, see: (a) Groot, L. H. M.; Ilic, A.; Schwarz, J.; W?rnmark, K. J. Am. Chem. Soc. 2023, 145, 9369.
[7]
(b) Dou, Q.; Wang, T.; Fang, L.; Zhai, H.; Cheng, B. Chin. J. Org. Chem. 2023, 43, 1386. (in Chinese)
[7]
(窦谦, 汪太民, 房丽晶, 翟宏斌, 程斌, 有机化学, 2023, 43, 1386.)
[8]
For selected examples, see: Alkyl iodide: (a) Caiger, L.; Sinton, C.; Constantin, T.; Douglas, J.; Sheikh, N. S.; Juliá, F.; Leonori, D. Chem. Sci. 2021, 12, 10448.
[8]
(b) Zhao, S.; Mankad, N. P. Angew. Chem., nt. Ed. 2018, 57, 5867.
[8]
(b) Alkyl tosylate: Shenouda, H.; Alexanian, E. J. Org. Lett. 2019, 21, 9268.
[8]
(c) Alkene:, Geng, H.-Q.; Meyer, T.; Franke, R.; Wu, X.-F. Chem. Sci. 2021, 12, 14937.
[8]
(d) Alkyne:, Jin, X.; Fu, H.-C.; Wang, M.-Y.; Huang, S.; Wang, Y.; He, L.-N.; Ma, X. Org. Lett. 2021, 23, 4997.
[8]
(e) Allene:, Moran, J.; Preetz, A.; Mesch, R. A.; Krische, M. J. Nat. Chem. 2011, 3, 287.
[8]
(f) Amide:, Ma, B.; Sun, R. S.; Yang, J. Chem. Commun. 2022, 58, 1382.
[8]
(g) Ketone:, Yang, J.; Xie, D.; Zhou, H.; Chen, S.; Duan, J.; Huo, C.; Li, C. Adv. Synth. Catal. 2018, 360, 3471.
[9]
Buratti, W.; Gardini, G. P. Minisci, F. Tetrahedron 1971, 27, 3655.
[10]
Huff, C. A.; Cohen, R. D.; Dykstra, K. D.; Streckfuss, E.; DiRocco, D. A.; Krska, S. W. J. Org. Chem. 2016, 81, 6980.
[11]
Shantharjun, B.; Vani, D.; Unnava, R.; Sandeepa, M.; Reddy, K. R. Org. Biomol. Chem. 2021, 19, 645.
[12]
Ni, H.; Li, C.; Shi, X.; Hu, X.; Mao, H. J. Org. Chem. 2022, 87, 9797.
[13]
Hashimoto, R.; Minoshima, M.; Sakata, S.; Ono, F.; Ishii, H.; Watakabe, Y.; Nemoto, T.; Yanaka, S.; Kato, K.; Kikuchi, K. Chem. Sci. 2022, 13, 7462.
[14]
Zhou, L.; Okugawa, N.; Togo, H. Eur. J. Org. Chem. 2017, 2017, 6239.
[15]
Wang, S.; Xing, S.; Zhang, Y.; Fan, Y.; Zhao, H.; Wang, J.; Zhang, S.; Wang, W. RSC Adv. 2019, 9, 41847.
[16]
Weitgenant, J. A.; Mortison, J. D.; Helquist, P. Org. Lett. 2005, 7, 3609.
[17]
Neumann, S.; D?hler, D.; Str?hl, D.; Binder, W. H. Polym. Chem. 2016, 7, 2342.
[18]
Rammal, F.; Gao, D.; Boujnah, S.; Hussein, A. A.; Lalevée, J.; Gaumont, A.-C.; Morlet-Savary, F.; Lakhdar, S. ACS Catal. 2020, 10, 13710.
[19]
Yepremyan, A.; Mekhail, M. A.; Niebuhr, B. P.; Pota, K.; Sadagopan, N.; Schwartz, T. M.; Green, K. N. J. Org. Chem. 2020, 85, 4988.
[20]
Furukawa, S. J. Pharm. Soc. Jpn. 1957, 77, 11.
[21]
Zou, B.; Chan, W. L.; Ding, M.; Leong, S. Y.; Nilar, S.; Seah, P. G.; Liu, W.; Karuna, R.; Blasco, F.; Yip, A.; Chao, A.; Susila, A.; Dong, H.; Wang, Q. Y.; Xu, H. Y.; Chan, K.; Wan, K. F.; Gu, F.; Diagana, T. T.; Wagner, T.; Dix, I.; Shi, P.-Y.; Smith, P. W. ACS Med. Chem. Lett. 2015, 6, 344.
[22]
He, T.; Yu, L.; Zhang, L.; Wang, L.; Wang, M. Org. Lett. 2011, 13, 5016.
文章导航

/