综述与进展

手性亚胺有机分子笼的合成及应用研究

  • 陈璐怡 ,
  • 谭梦霞 ,
  • 金迦南 ,
  • 张子彬 ,
  • 黄飞鹤 ,
  • 李世军 ,
  • 李云霞
展开
  • a 杭州师范大学材料与化学化工学院 有机硅化学及材料技术教育部重点实验室 杭州 311121
    b 浙江大学化学系 司徒塔特分子科学研究院 杭州 310058
    c 浙江大学杭州国际科创中心 浙江-以色列自组装功能材料联合实验室 杭州 311215

收稿日期: 2024-01-12

  修回日期: 2024-03-18

  网络出版日期: 2024-04-10

基金资助

国家自然科学基金(21773052); 国家自然科学基金(22071040); 浙江省自然科学基金(LZ24B020005)

Synthesis and Application of Chiral Organic Imine Molecular Cages

  • Luyi Chen ,
  • Mengxia Tan ,
  • Jia'nan Jin ,
  • Zibin Zhang ,
  • Feihe Huang ,
  • Shijun Li ,
  • Yunxia Li
Expand
  • a College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121
    b Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058
    c Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215

Received date: 2024-01-12

  Revised date: 2024-03-18

  Online published: 2024-04-10

Supported by

National Natural Science Foundation of China(21773052); National Natural Science Foundation of China(22071040); Natural Science Foundation of Zhejiang Province(LZ24B020005)

摘要

作为一类新型多孔材料, 多孔有机分子笼(POCs)在分子识别、气体存储与分离、催化及传感等方面表现出优异的性能. 此外, POCs的良好溶解性赋予其易于加工处理的优势, 使其可与其它材料复合获得更多结构与性能. 作为POCs主要家族成员之一, 基于动态亚胺键的亚胺有机分子笼的研究近年取得巨大进展, 其中手性亚胺有机分子笼展现了POCs在手性识别、对映选择性分离及不对称催化等领域的广阔应用前景. 系统综述了手性亚胺有机分子笼的合成及其应用等方面的研究进展, 归纳总结了手性亚胺有机分子笼的三种有效合成策略, 包括利用手性构筑基元直接合成、利用非手性构筑基元在对称性破缺效应下的手性组装和利用外消旋构筑基元的手性自分类组装. 并回顾了近年来手性亚胺有机分子笼在手性识别、手性色谱分离及不对称催化领域的应用.

本文引用格式

陈璐怡 , 谭梦霞 , 金迦南 , 张子彬 , 黄飞鹤 , 李世军 , 李云霞 . 手性亚胺有机分子笼的合成及应用研究[J]. 有机化学, 2024 , 44(9) : 2617 -2639 . DOI: 10.6023/cjoc202401011

Abstract

As a kind of novel porous materials, porous organic molecular cages (POCs) exhibit excellent properties in the field of molecular recognition, gas storage and separation, catalysis and sensing. Moreover, their good solubilities make them easily fabricate composite materials to obtain more complicated structures and interesting performances. As one of main family members of POCs, organic imine molecular cages based on dynamic imine bonds have been extensively studied. Among them, chiral organic imine molecular cages have exhibited the wide applications of POCs in the fields such as chiral recognition, enantiomer separation, asymmetric catalysis, and so on. In order to provide a comprehensive overview of the synthesis and applications of chiral organic imine molecular cages, three effective synthetic strategies of chiral organic imine molecular cages, including direct synthesis by using enantiopure chiral building blocks, chiral assembly with achiral building blocks under the effect of symmetry breaking, and chiral self-sorting assembly with racemic building blocks, are summarized. The recent progresses of the applications of chiral organic molecular imine cages in the fields of chiral molecular recognition, chiral chromatographic separation and asymmetric catalysis are also briefly retrospected.

参考文献

[1]
Sun, Z. F.; Hou, J. J.; Li, L. S.; Tang, Z. Y. Coord. Chem. Rev. 2020, 425, 213481.
[2]
Zhuo, S. Q.; Zhang, X. Y.; Luo, H.; Wang, X. H.; Ji, Y. B. Macromol. Rapid. Commun. 2020, 41, 2000404.
[3]
Zhang, Y.; Jin, X. N.; Ma, X. F.; Wang, Y. Anal. Methods 2021, 13, 8.
[4]
Lu, Y. Z. H.; Zhang, H. C.; Zhu, Y. L.; Marriott, P. J.; Wang, H. T. Adv. Funct. Mater. 2021, 31, 2101335.
[5]
Hasell, T.; Cooper, A. I. Nat. Rev. Mater. 2016, 1, 1.
[6]
Zhang, J. H.; Xie, S. M.; Zi, M.; Yuan, L. M. J. Sep. Sci. 2020, 43, 134.
[7]
Hu, D. Y.; Zhang, J. J.; Liu, M. Chem. Commun. 2022, 58, 11333.
[8]
Montà-González, G.; Sancenón, F.; Martínez-Má?ez, R.; Martí- Centelles, V. Chem. Rev. 2022, 122, 13636.
[9]
Bhandari, P.; Mukherjee, P. S. ACS Catal. 2023, 13, 6126.
[10]
Zhang, G.; Mastalerz, M. ; Chem. Soc. Rev. 2014, 43, 1934.
[11]
Huang, S. L.; Jin, G. X.; Luo, H. K.; Andy Hor, T. S. Chem.-Asian J. 2015, 10, 24.
[12]
Acharyya, K.; Mukherjee, P. S. Angew. Chem., Int. Ed. 2019, 58, 8640.
[13]
Quan, M. L. C.; Cram, D. J. J. Am. Chem. Soc. 1991, 113, 2754.
[14]
Tozawa, T.; Jones, J. T. A.; Swamy, S. I.; Jiang, S.; Adams, D. J.; Shakespeare, S.; Clowes, R.; Bradshaw, D.; Hasell, T.; Chong, S. Y.; Tang, C.; Thompson, S. ; Parker, J.; Trewin, A.; Bacsa, J.; Slawin, A. M. Z.; Steiner, A.; Cooper, A. I. Nat. Mater. 2009, 8, 973.
[15]
Evans, J. D.; Sumby, C. J.; Doonan, C. J. Chem. Lett. 2015, 44, 582.
[16]
Yu, N.; Ding, H. M.; Wang, C. Prog. Chem. 2016, 28, 1721 (in Chinese).
[16]
(喻娜, 丁慧敏, 汪成, 化学进展, 2016, 28, 1721.)
[17]
Xu, Z. Z.; Ye, Y. Z.; Liu, H. L.; Liu, H. Y.; Jiang, S. Chem. Commun. 2024, 60, 2261.
[18]
Santolini, V.; Miklitz, M.; Berardo, E.; Jelfs, K. E. Nanoscale 2017, 9, 5280.
[19]
Ono, K.; Iwasawa, N. Chem.-Eur. J. 2018, 24, 17856.
[20]
Skowronek, P.; Gawronski, J. Org. Lett. 2008, 10, 4755.
[21]
Jones, J. T. A.; Hasell, T.; Wu, X. F; Bacsa, J.; Jelfs, K. E.; Schmidtmann, M.; Chong, S. Y.; Adams, D. J.; Trewin, A.; Schiffman, F.; Cora, F.; Slater, B.; Steiner, A.; Day, G. M.; Cooper, A. I. Nature 2011, 474, 367.
[22]
Bojdys, M. J.; Briggs, M. E.; Jones, J. T. A.; Adams, D. J.; Chong, S. Y.; Schmidtmann, M.; Cooper, A. I. J. Am. Chem. Soc. 2011, 133, 16566.
[23]
Giri, N.; Davidson, C. E.; Melaugh, G.; Del Pópolo, M. G.; Jones, J. T. A.; Hasell, T.; Cooper, A. I.; Horton, P. N.; Hursthouse, M. B.; James, S. L. Chem. Sci. 2012, 3, 2153.
[24]
Jelfs, K. E.; Wu, X. F.; Schmidtmann, M.; Jones, J. T. A.; Warren, J. E.; Adams, D. J.; Cooper, A. I. Angew. Chem., Int. Ed. 2011, 50, 10653.
[25]
Wang, W. L.; Li, C. Y.; Zhang, H.; Zhang, J. W.; Lu, L. L.; Jiang, Z.; Cui, L. F.; Liu, H. G.; Yan, L.; Ding, Y. J. Chin. J. Catal. 2021, 42, 1216.
[26]
Mondal, B.; Acharyya, K.; Howlader, P.; Mukherjee, P. S. J. Am. Chem. Soc. 2016, 138, 1709.
[27]
Ding, H. M.; Yang, Y. H.; Li, B. J.; Pan, F.; Zhu, G. Z.; Zeller, M.; Yuan, D. Q.; Wang, C. Chem. Commun. 2015, 51, 1976.
[28]
Mondal, B.; Mukherjee, P. S. J. Am. Chem. Soc. 2018, 140, 12592.
[29]
Feng, G. F.; Liu, W.; Peng, Y. X.; Zhao, B.; Huang, W.; Dai, Y. F. Chem. Commun. 2016, 52, 9267.
[30]
Slater, A. G.; Little, M. A.; Pulido, A.; Chong, S. Y.; Holden, D.; Chen, L.; Morgan, C.; Wu, X.; Cheng, G.; Clowes, R.; Briggs, M. E.; Hasell, T.; Jelfs, K. E.; Day, G. M.; Cooper, A. I. Nat. Chem. 2017, 9, 17.
[31]
Sun, N.; Wang, C. M.; Wang, H. L.; Yang, L.; Jin, P.; Zhang, W.; Jiang, J. Z. Angew. Chem., Int. Ed. 2019, 58, 18011.
[32]
Liu, C.; Liu, K. H.; Wang, C. M.; Liu, H. Y.; Wang, H. L.; Su, H. M.; Li, X. Y; Chen, B. L.; Jiang, J. Z. Nat. Commun. 2020, 11, 1047.
[33]
Zhang, L.; Liang, R. R.; Hang, C.; Wang, H. Y.; Sun, L.; Xu, L.; Liu, D. R.; Zhang, Z. Y.; Zhang, X. M.; Chang, F. F.; Zhao, S. Y.; Huang, W. Green Chem. 2020, 22, 2498.
[34]
Lei, Y.; Chen, Q.; Liu, P.; Wang, L. X.; Wang, H. Y.; Li, B. D.; Lu, X. Y.; Chen, Z.; Pan, Y. J.; Huang, F. H.; Li, H. Angew. Chem., Int. Ed. 2021, 60, 4705.
[35]
Bhandari, P.; Mondal, B.; Howlader, P.; Mukherjee, P. S. Eur. J. Inorg. Chem. 2022, 2022, e202100986.
[36]
?olomek, T.; Powers-Riggs, N. E.; Wu, Y. L.; Young, R. M.; Krzyaniak, M. D.; Horwitz, N. E.; Wasielewski, M. R. J. Am. Chem. Soc. 2017, 139, 3348.
[37]
Feng, X. Y.; Liao, P. S.; Jiang, J. X.; Shi, J. Y.; Ke, Z. F.; Zhang, J. Y. ChemPhotoChem 2019, 3, 1014.
[38]
Xu, N.; Su, K. Z.; El-Sayed, E. M.; Ju, Z. F.; Yuan, D. Q. Chem. Sci. 2022, 13, 3582.
[39]
Malik, A. U.; Gan, F. W.; Shen, C. S.; Yu, N.; Wang, R. B.; Crassous, J.; Shu, M. H.; Qiu, H. B. J. Am. Chem. Soc. 2018, 140, 2769.
[40]
Ramakrishna, E.; Tang, J. D.; Tao, J. J.; Fang, Q.; Zhang, Z. B.; Huang, J. Y.; Li, S. J. Chem. Commun. 2021, 57, 9088.
[41]
Liu, C.; Jin, Y. C.; Qi, D. D.; Ding, X. ; Ren, H. M.; Wang, H. L.; Jiang, J. Z. Chem. Sci. 2022, 13, 7014.
[42]
Liu, J. G.; Yin, F.; Hu, J.; Ju, Y. Chin. J. Org. Chem. 2021, 41, 1031 (in Chinese).
[42]
(刘金果, 殷凤, 胡君, 巨勇, 有机化学, 2021, 41, 1031.)
[43]
Wang, X. C.; Wang, Y.; Yang, H. Y.; Fang, H. X.; Chen, R. X.; Sun, Y. B.; Zheng, N. F.; Tan, K.; Lu, X.; Tian, Z. Q.; Cao, X. Y. Nat. Commun. 2016, 7, 12469.
[44]
Qu, H.; Wang, Y.; Li, Z. H.; Wang, X. C.; Fang, H. X.; Tian, Z. Q.; Cao, X. Y. J. Am. Chem. Soc. 2017, 139, 18142.
[45]
Zhang, P.; Wang, X. C.; Xuan, W.; Peng, P. X.; Li, Z. H.; Lu, R. Q.; Wu, S.; Tian, Z, Q.; Cao, X. Y. Chem. Commun. 2018, 54, 4685.
[46]
Chen, Y. X.; Wu, G. C.; Chen, B. B.; Qu, H.; Jiao, T. Y.; Li, Y. T.; Ge, C. Q.; Zhang, C.; Liang, L. X.; Zeng, X. Q.; Cao, X. Y.; Wang, Q.; Li, H. Angew. Chem., Int. Ed. 2021, 60, 18815.
[47]
Beaudoin, D.; Rominger, F.; Mastaler?, M. Angew. Chem., Int. Ed. 2017, 56, 1244.
[48]
Wagner, P.; Rominger, F.; Zhang, W. S.; Gross, J. H.; Elbert, S. M.; Schr?der, R. R.; Mastaler?, M. Angew. Chem., Int. Ed. 2021, 60, 8896.
[49]
Wang, X. C.; Peng, P. X.; Xuan, W.; Wang, Y.; Zhuang, Y. B.; Tian, Z. Q.; Cao, X. Y. Org. Biomol. Chem. 2018, 16, 34.
[50]
Jiao, T. Y.; Qu, H.; Tong, L.; Cao, X. Y.; Li, H. Angew. Chem., Int. Ed. 2021, 60, 9852.
[51]
Chen, L. J.; Reiss, P. S.; Chong, S. Y.; Holden, D.; Jelfs, K. E.; Hasell, T.; Little, M. A.; Kewley, A.; Briggs, M. E.; Stephenson, A.; Thomas, K. M.; Armstrong, J. A.; Bell, J.; Busto, J.; Noel, R.; Liu, J.; Strachan, D. M.; Thallapally, P. K.; Cooper, A. I. Nat. Mater. 2014, 13, 954.
[52]
Duan, A. H.; Wang, B. J.; Xie, S. M.; Zhang, J. H.; Yuan, L. M. Chirality 2017, 29, 172.
[53]
Wang, B. J.; Duan, A. H.; Zhang, J. H.; Xie, S. M.; Cao, Q. E.; Yuan, L. M. Molecules 2019, 24, 420.
[54]
Lu, Z. Y; Lu, X. T.; Zhong, Y. H.; Hu, Y. F.; Li, G. K.; Zhang, R. K. Anal. Chim. Acta 2019, 1050, 146.
[55]
Zhang, J. H.; Xie, S. M.; Chen, L.; Wang, B. J.; He, P. G.; Yuan, L. M. Anal. Chem. 2015, 87, 7817.
[56]
Kewley, A.; Stephenson, A.; Chen, L. J.; Briggs, M. E.; Hasell, T.; Cooper, A. I. Chem. Mater. 2015, 27, 3207.
[57]
Xie, S. M.; Zhang, J. H.; Fu, N.; Wang, B. J.; Chen, L.; Yuan, L. M. Anal. Chim. Acta 2016, 903, 156.
[58]
Zhang, J. H.; Xie, S. M.; Wang, B. J.; He, P. G.; Yuan, L. M. J. Chromatogr. A 2015, 1426, 174.
[59]
Xie, S. M.; Zhang, J. H.; Fu, N.; Wang, B. J.; Hu, C.; Yuan, L. M. Molecules 2016, 21, 1466.
[60]
Zhang, J. H.; Xie, S. M.; Wang, B. J.; He, P. G.; Yuan, L. M. J. Sep. Sci. 2018, 41, 1385.
[61]
Wang, Z. M.; Cui, Y. Y.; Yang, C. X.; Yan, X. P. ACS Appl. Nano Mater. 2020, 3, 479.
[62]
Zhang, J. H.; Zhu, P. J.; Xie, S. M.; Zi, M.; Yuan, L. M. Anal. Chim. Acta 2018, 999, 169.
[63]
Wang, Y.; Chen, J. K.; Xiong, L. X.; Wang, B. J.; Xie, S. M.; Zhang, J. H.; Yuan, L. M. Anal. Chem. 2022, 94, 4961.
[64]
Li, K.; Xiong, L. X.; Wang, Y.; Zhang, Y. P.; Wang, B. J.; Xie, S. M.; Zhang, J. H.; Yuan, L. M. J. Chromatogr. A 2022, 1679, 463415.
[65]
Liang, R. X.; Zhang, Y. P.; Zhang, J. H.; Gong, Y. N.; Huang, B.; Wang, B. J.; Xie, S. M.; Yuan, L. M. J. Chromatogr. A 2023, 1711, 464444.
[66]
Sun, S. S.; Wang, L. T.; Wang, J. S.; Lv, W. J.; Yu, Q. H.; Pei, D.; Han, S. Q.; Li, X. Y.; Wang, M.; Liu, S.; Quan, X. G.; Lv, M. J. Sep. Sci. 2023, 46, 2200935.
[67]
Sun, J. K; Zhan, W. W.; Akita, T.; Xu, Q. J. Am. Chem. Soc. 2015, 137, 7063.
[68]
Zhang, Y.; Xiong, Y.; Ge, J.; Lin, R.; Chen, C.; Peng, Q.; Wang, D. S.; Li, Y. D. Chem. Commun. 2018, 54, 2796.
[69]
Yang, X. C.; Sun, J. K.; Kitta, M.; Pang, H.; Xu, Q. Nat. Catal. 2018, 1, 214.
[70]
Wang, K. X.; Tang, X. H.; Anjali, B. A.; Dong, J. Q.; Jiang, J. W.; Liu, Y.; Cui, Y. J. Am. Chem. Soc. 2024, 146, 6638.
文章导航

/