研究论文

基于炔基亚砜与炔酰胺/炔醚的交叉偶联/[3,3]-硫鎓离子重排串联策略构筑四取代呋喃

  • 孟书玉 ,
  • 郭闻涛 ,
  • 王全瑞
展开
  • 复旦大学化学系 上海 200438

收稿日期: 2024-01-15

  修回日期: 2024-03-28

  网络出版日期: 2024-04-10

基金资助

国家自然科学基金(21971042)

Cascade Cross-Coupling/[3,3]-Sulfonium Rearrangement of Alkynyl Sulfoxides and Ynamides/Ynol Ethers to Construct Tetrasubstituted Furans

  • Shuyu Meng ,
  • Wentao Guo ,
  • Quanrui Wang
Expand
  • Department of Chemistry, Fudan University, Shanghai 200438

Received date: 2024-01-15

  Revised date: 2024-03-28

  Online published: 2024-04-10

Supported by

National Natural Science Foundation of China(21971042)

摘要

报道了一种无需过渡金属催化的四取代呋喃类化合物的合成策略. 在三氟化硼乙醚络合物的作用下, 炔基亚砜与炔酰胺或炔醚发生反应, 经交叉偶联、[3,3]-硫鎓离子重排和5-exo-dig杂环化关环的串联步骤生成四取代呋喃. 产物中呋喃环α-位的烷硫基可通过进一步后修饰反应, 转化为所需的其它烷基或芳基取代基.

本文引用格式

孟书玉 , 郭闻涛 , 王全瑞 . 基于炔基亚砜与炔酰胺/炔醚的交叉偶联/[3,3]-硫鎓离子重排串联策略构筑四取代呋喃[J]. 有机化学, 2024 , 44(7) : 2274 -2285 . DOI: 10.6023/cjoc202401016

Abstract

A transition-metal-free strategy for the synthesis of tetrasubstituted furans is reported. Promoted by boron trifluoride diethyl etherate, the reaction of alkynyl sulfoxides with ynamides/ynol ethers proceeded via a cascade process including cross-coupling of the two reactants, [3,3]-sulfonium rearrangement, and 5-exo-dig heterocyclization, leading to tetrasubstituted furan products. The resultant α-alkylthio groups can be used for further functionalization, such as to introduce other alkyl/aryl groups.

参考文献

[1]
(a) Brown, R. C. D. Angew. Chem., Int. Ed. 2005, 44, 850.
[1]
(b) Sperry, J. B.; Wright, D. L. Curr. Opin. Drug Discovery Dev. 2005, 8, 723.
[1]
(c) Wong, H. N. C.; Hou, X. L.; Yeung, K. S.; Huang, H. In Five-Membered Heterocycles: Furan, Eds.: Alvarez-Builla, J.; Vaquero, J. J.; Barluenga, J., Wiley-VCH, 2011.
[1]
(d) Keay, B. A.; Hopkins, J. M.; Dibble, P. W. Furans and Their Benzo Derivatives: Applications. In Comprehensive Heterocyclic Chemistry III, Eds.: Katritzky, A. R.; Ramsden, C. A.; Scriven, E. F. V.; Taylor, R. J. K., Elsevier, Amsterdam, 2008.
[1]
(e) Peterson, L. A. Drug Metab. Rev. 2006, 38, 615.
[1]
(f) Peterson, L. A. Chem. Res. Toxicol. 2013, 26, 6.
[1]
(g) Tian, M.; Peng, Y.; Zheng, J. Drug Metab. Dispos. 2022, 50, 655.
[2]
(a) Hou, X. L.; Cheung, H. Y.; Hon, T. Y.; Kwan, P. L.; Lo, T. H.; Tong, S. Y.; Wong, H. N. C. Tetrahedron 1998, 54, 1955.
[2]
(b) Deepthi, A.; Babu, B. P.; Balachandran, A. L. Org. Prep. Proced. Int. 2019, 51, 409.
[2]
(c) Duc, D. X. Mini-Rev. Org. Chem. 2019, 16, 422.
[2]
(d) Heravi, M. M.; Zadsirjan, V. Adv. Heterocycl. Chem. 2015, 117, 261.
[2]
(e) Li, Y.; Cheng, L.; Chen, L.; Li, B.; Sun, N.; Qing, N. Chin. J. Org. Chem. 2016, 36, 2426. (in Chinese)
[2]
(李亦彪, 程亮, 陈路, 李滨, 孙宁, 卿宁, 有机化学, 2016, 36, 2426.)
[2]
(f) Zhang, W.; Xu, W.; Zhang, F.; Li, Y. Chin. J. Org. Chem. 2019, 39, 1277. (in Chinese)
[2]
(张文生, 许文静, 张斐, 李焱, 有机化学, 2019, 39, 1277.)
[3]
(a) Minetto, G.; Raveglia, L. F.; Taddei, M. Org. Lett. 2004, 6, 389.
[3]
(b) Minetto, G.; Raveglia, L. F.; Sega, A.; Taddei, M. Eur. J. Org. Chem. 2005, 2005, 5277.
[3]
(c) Khaghaninejad, S.; Heravi, M. M. Adv. Heterocycl. Chem. 2014, 111, 95.
[3]
(d) Chen, L.; Du, Y.; Zeng, X.-P.; Shi, T.-D.; Zhou, F.; Zhou, J. Org. Lett. 2015, 17, 1557.
[4]
(a) Calter, M. A.; Phillips, R. M.; Flaschenriem, C. J. Am. Chem. Soc. 2005, 127, 14566.
[4]
(b) Huang, W.-Y.; Chen, Y.-C.; Chen, K. Chem.-Asian J. 2012, 7, 688.
[4]
(c) Ghazvini, M.; Shahvelayati, A. S.; Sabri, A.; Nasrabadi, F. Z. Chem. Heterocycl. Compd. 2016, 52, 161.
[5]
(a) Cacchi, S.; Fabrizi, G.; Goggiomani, A. Heterocycles 2002, 56, 613.
[5]
(b) Cadierno, V.; Crochet, P. Curr. Org. Synth. 2008, 5, 343.
[5]
(c) Moran, W. J.; Rodriguez, A. Org. Prep. Proced. Int. 2012, 44, 103.
[5]
(d) Gulevich, A. V.; Dudnik, A. S.; Chernyak, N.; Gevorgyan, V. Chem. Rev. 2013, 113, 3084.
[5]
(e) Yu, J.; Sheng, H.-X.; Wang, S.-W.; Xu, Z.-H.; Tang, S.; Chen, S.-L. Chem. Commun. 2019, 55, 4578.
[5]
(f) Miyairi, A.; Oonishi, Y.; Sato, Y. Org. Biomol. Chem. 2021, 19, 9396.
[5]
(g) Zhang, Z.; Huang, A.; Ma, L.; Xu, J.-H.; Zhang, M. RSC Adv. 2022, 12, 15190.
[5]
(h) Fernandes, R.; Mhaske, K.; Narayan, R. Tetrahedron 2022, 103, 132553.
[6]
(a) Kirsch, S. F. Org. Biomol. Chem. 2006, 4, 2076.
[6]
(b) He, C.; Guo, S.; Ke, J.; Hao, J.; Xu, H.; Chen, H.; Lei, A. J. Am. Chem. Soc. 2012, 134, 5766.
[6]
(c) Yuan, Y.; Tan, H.; Kong, L.; Zheng, Z.; Xu, M.; Huang, J.; Li, Y. Org. Biomol. Chem. 2019, 17, 2725.
[6]
(d) You, C.; Zhang, Z.; Tu, Y.; Tang, H.; Wang, Y.; Long, D.; Zhao, J. J. Org. Chem. 2020, 85, 3902.
[6]
(e) Cai, S.-Z.; Ge, D.; Sun, L.-W.; Rao, W.; Wang, X.; Shen, Z.-L.; Chu, X.-Q. Green Chem. 2021, 23, 935.
[7]
(a) Cao, H.; Jiang, H.; Yao, W.; Liu, X. Org. Lett. 2009, 11, 1931.
[7]
(b) Mothe, S. R.; Lauw, S. J. L.; Kothandaraman, P.; Chan, P. W. H. J. Org. Chem. 2012, 77, 6937.
[7]
(c) He, X.; Tang, Y.; Wang, Y.; Chen, J. B.; Xu, S.; Dou, J.; Li, Y. Angew. Chem., Int. Ed. 2019, 58, 10698.
[7]
(d) Kondoh, A.; Aita, K.; Ishikawa, S.; Terada, M. Org. Lett. 2020, 22, 2105.
[7]
(e) Kobatake, T.; Fujino, D.; Yoshida, S.; Yorimitsu, H.; Oshima, K. J. Am. Chem. Soc. 2010, 132, 11838.
[7]
(f) Murakami, K.; Yorimitsu, H.; Osuka, A. Angew. Chem., Int. Ed. 2014, 53, 7510.
[7]
(g) Haut, F. L.; Habiger, C.; Wein, L. A.; Wurst, K.; Podewitz, M.; Magauer, T. J. Am. Chem. Soc. 2021, 143, 1216.
[7]
(h) Kosack, S.; Himbert, G. Chem. Ber. 1987, 120, 71.
[8]
(a) Huang, X.; Maulide, N. J. Am. Chem. Soc. 2011, 133, 8510.
[8]
(b) Peng, B.; Geerdink, D.; Farès, C.; Maulide, N. Angew. Chem., Int. Ed. 2014, 53, 5462.
[8]
(c) Kaldre, D.; Maryasin, B.; Kaiser, D.; Gajsek, O.; González, L.; Maulide, N. Angew. Chem., Int. Ed. 2017, 56, 2212.
[8]
(d) Kaldre, D.; Klose, I.; Maulide, N. Science 2018, 361, 664.
[9]
March, J.Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, 3rd ed., John Wiley & Sons, New York, 1985.
[10]
(a) Zou, Y.; Ding, C.; Zhou, L.; Li, Z.; Wang, Q.; Schoenebeck, F.; Goeke, A. Angew. Chem., Int. Ed. 2012, 51, 5647.
[10]
(b) Zhou, L.; Li, Z.; Zou, Y.; Wang, Q.; Sanhueza, I. A.; Schoenebeck, F.; Goeke, A. J. Am. Chem. Soc. 2012, 134, 20009.
[10]
(c) Liu, J.; Hu?rlimann, V.; Emter, R.; Natsch, A.; Esposito, C.; Linker, S. M.; Zou, Y.; Zhou, L.; Wang, Q.; Riniker, S.; Kraft, P. Synlett 2020, 31, 972.
[10]
(d) Liu, J.; Zhou, L.; Zou, Y.; Wang, Q.; Goeke, A. Org. Biomol. Chem. 2020, 18, 7832.
[11]
Meng, S.; Wang, Y.; Liu, J.; Zheng, J.; Qian, X.; Wang, Q. Org. Lett. 2022, 24, 757.
[12]
Zeng, X.; Tu, Y.; Zhang, Z.; You, C.; Wu, J.; Ye, Z.; Zhao, J. J. Org. Chem. 2019, 84, 4458.
[13]
Wender, P. A.; Ebner, C.; Fennell, B. D.; Inagaki, F.; Schro?der, B. Org. Lett. 2017, 19, 5810.
[14]
DeKorver, K. A.; Li, H.; Lohse, A. G.; Hayashi, R.; Lu, Z.; Zhang, Y.; Hsung, R. P. Chem. Rev. 2010, 110, 5064.
[15]
Gray, V. J.; Wilden, J. D. Org. Biomol. Chem. 2016, 14, 9695.
[16]
Sakamoto, T.; Yasuhara, A.; Kondo, Y.; Yamanaka, H. Chem. Pharm. Bull. 1994, 42, 2032.
[17]
(a) Baralle, A.; Otsuka, S.; Guérin, V.; Murakami, K.; Yorimitsu, H.; Osuka, A. Synlett 2015, 26, 327.
[17]
(b) Gao, K.; Otsuka, S.; Baralle, A.; Nogi, K.; Yorimitsu, H.; Osuka, A. J. Synth. Org. Chem., Jpn. 2016, 74, 1119.
文章导航

/