研究论文

糖基化干扰素-γ的半合成

  • 周敏园 ,
  • 赵洁 ,
  • 叶发荣 ,
  • 黄平 ,
  • 邓明刚 ,
  • 王平
展开
  • a 华中农业大学生命科学与技术学院 武汉 430070
    b 上海交通大学 张江高等研究院 上海手性药物分子工程重点实验室 化学糖生物学中心 上海 200240
† 共同第一作者.

收稿日期: 2024-02-05

  修回日期: 2024-03-17

  网络出版日期: 2024-04-10

基金资助

国家自然科学基金(21672146); 国家自然科学基金(22077080); 国家自然科学基金(92253302); 上海交通大学医工交叉基金(21TQ1400210)

Semi-synthesis of Glycosylated Interferon-γ

  • Minyuan Zhou ,
  • Jie Zhao ,
  • Farong Ye ,
  • Ping Huang ,
  • Minggang Deng ,
  • Ping Wang
Expand
  • a College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070
    b Center for Chemical Glycobiology, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240
† These authors contributed equally to this work.

Received date: 2024-02-05

  Revised date: 2024-03-17

  Online published: 2024-04-10

Supported by

National Natural Science Fund(21672146); National Natural Science Fund(22077080); National Natural Science Fund(92253302); Cross Fund of Shanghai Jiao Tong University Medical Engineering(21TQ1400210)

摘要

干扰素-γ (IFN-γ)是一种重要的细胞因子, 具有增强免疫活性、抗肿瘤和抗病毒的作用, 在医学研究和临床应用中具有广泛的潜力. 本研究报道了一种均一N-GlcNAc修饰的IFN-γ的化学半合成方法. 利用化学方法合成制备糖肽片段(Pyr1-Leu33)和多肽片段(Lys34-Ser39), 并通过大肠杆菌表达得到多肽片段(Ser40-Gly138). 采用“表达丝氨酸连接”和“自然化学连接-脱硫”相结合的策略, 成功完成了自C端到N端的N-GlcNAc修饰的IFN-γ蛋白的合成, 并成功地对目标糖蛋白进行了复性.

本文引用格式

周敏园 , 赵洁 , 叶发荣 , 黄平 , 邓明刚 , 王平 . 糖基化干扰素-γ的半合成[J]. 有机化学, 2024 , 44(7) : 2296 -2304 . DOI: 10.6023/cjoc202402006

Abstract

Interferon-gamma (IFN-γ) is an important cytokine with enhanced immune activity, anti-tumor and antiviral effects, and holds significant potential in medical research and clinical applications. In this study, we report a highly efficient semi-synthesis strategy of homogeneous N-GlcNAc modified IFN-γ. The glycopeptide fragment (Pyr1-Leu33) and peptide fragment (Lys34-Ser39) were prepared through chemical methods. And the peptide fragment (Ser40-Gly138) was obtained through Escherichia coli (E. coli) expression. Subsequently, using a combination of “expressed serine ligation” and “native chemical ligation-desulfurization”, we ligated these fragments from the C-terminal to the N-terminal, resulting in a full-length glycoprotein, which was successfully refolded to obtain the desired product.

参考文献

[1]
Hoffmann, H. H.; Schneider, W. M.; Rice, C. M. Trends. Immunol. 2015, 36, 124.
[2]
Schroder, K.; Hertzog, P. J.; Ravasi, T.; Hume, D. A. J. Leukocyte. Biol. 2004, 75, 163.
[3]
Mckenzie, A. N. J.; Spits, H.; Eberl, G. Immunity. 2014, 41, 366.
[4]
Wheelock, E. F. Science. 1965, 149, 310.
[5]
Dunn, G. P.; Koebel, C. M.; Schreiber, R. D. Nat. Rev. Immunol. 2006, 6, 836.
[6]
Farrar, M. A.; Schreiber, R. D. Annu. Rev. Immunol. 1993, 11, 571.
[7]
Devos, R.; Cheroutre, H.; Taya, Y.; Degrave, W.; Heuverswyn, H. V.; Fiers, W. Nucleic. Acids. Res. 1982, 10, 2487.
[8]
Rinderknecht, E.; O'Connor, B. H.; Rodriguez, H. J. Biol. Chem. 1984, 259, 6790.
[9]
Pan, Y. C. E.; Stern, A. S.; Familletti, P. C.; Chizzonite, R.; Khan, F. R. Eur. J. Biochem. 1987, 166, 145.
[10]
Landar, A.; Curry, B.; Parker, M. H.; DiGiacomo, R.; Indelicato, S. R.; Nagabhushan, T. L.; Rizzi, G.; Walter, M. R. J. Mol. Biol. 2000, 299, 169.
[11]
Yip, Y. K.; Barrowclough, B. S.; Urban, C.; Vilcek, J. Proc. Natl. Acad. Sci. 1982, 79, 1820.
[12]
Alonso, M. G.; Hirsch, T.; Wildmann, C.; Bruggen, P. V. Nat. Commun. 2017, 8, 793.
[13]
Sareneva, T.; Pirhonen, J.; Cantell, K.; Julkunen, I. Biochem. J. 1995, 308, 9.
[14]
Dao, Y.-K.; Han, L.; Wang, H.-X.; Dong, S.-W. Org. Lett. 2019, 21, 3265.
[15]
Wang, X.; Ashhurst, A. S.; Dowman, L. J.; Watson, E. E.; Li, H.-Y.; Fairbanks, A. J.; Larance, M.; Kwan, A.; Payne, R. J. Org. Lett. 2020, 22, 6863.
[16]
Merrifield, R. B. J. Am. Chem. Soc. 1963, 85, 2149.
[17]
Zhao, J.; Ye, F.-R.; Huang, P.; Wang, P. Curr. Opin. Chem. Biol. 2023, 77, 102405.
[18]
Wang, S.-Y.; Zhou, Q.-Q.; Li, Y.-X.; Wei, B.-C.; Liu, X.-L.; Zhao, J.; Ye, F.-R.; Zhou, Z.-N.; Ding, B.; Wang, P. J. Am. Chem. Soc. 2022, 144, 1232.
[19]
Liu, X.-L.; Gao, Z.-J.; Zhao, J.; Huang, P.; Wang, P. Chin. J. Chem. 2024, doi: 10.1002/cjoc.202300762.
[20]
Ye, F.-R.; Zhao, J.; Xu, P.; Liu, X.-L.; Yu, J.; Shangguan, W.; Liu, J.-Z.; Luo, X.-S.; Li, C.; Ying, T.-L.; Wang, J.; Yu, B.; Wang, P. Angew. Chem. Int. Ed. 2021, 60, 12904.
[21]
Ye, F.-R.; Li, C.; Liu, F.-L.; Liu, X.-L.; Xu, P.; Luo, R.-H.; Song, W.-P.; Zheng, Y.-T.; Ying, T.-L.; Yu, B.; Wang, P. Natl. Sci. Rev. 2024, doi: https://doi.org/10.1093/nsr/nwae030.
[22]
Zhao, J.; Liu, J.-Z.; Liu, X.-L.; Ye, F.-R.; Wang, S.-Y.; Wang, P. Tetrahedron. Lett. 2022, 104, 154024.
[23]
Zhao, J.; Liu, X.-L.; Liu, J.-L.; Ye, F.-R.; Wei, B.-C.; Deng, M.-G.; Li, T.-H.; Huang, P.; Wang, P. J. Am. Chem. Soc. 2024, 146, 2615.
[24]
Dawson, P. E.; Muir, T. W.; Clark-Lewis, I.; Kent, S. B. H. Science 1994, 266, 776.
[25]
Li, X.-C.; Lam, H. Y.; Zhang, Y.-F.; Chan, C. K. Org. Lett. 2010, 12, 1724.
[26]
Yan, L. Z.; Dawson, P. E. J. Am. Chem. Soc. 2001, 123, 526.
[27]
Xiao, Q.; Zhang, F.-R.; Nacev, B. A.; Liu, J.-O.; Pei, D. Biochemistry 2010, 49, 5588.
[28]
Liu, H.; Li, X.-C. Acc. Chem. Res. 2018, 51, 1643.
[29]
Zhao, J.; Liu, J.-Z.; Liu, X.-L.; Cao, Q.; Zhao, H.-B.; Liu, L.-Z.; Ye, F.-R.; Wang, C.; Shao, H.; Xue, D.-X.; Tao, H.-C.; Li, B.; Yu, B.; Wang, P. Chin. J. Chem. 2022, 40, 787.
[30]
Liu, J.-M.; Wei, T.-Y.; Tan, Y.; Liu, H.; Li, X.-C. Chem. Sci. 2021, 13, 1367.
[31]
Augustyns, K.; Kraas, W.; Jung, G. J. Pept. Res. 1998, 51, 127.
[32]
Yin, H.-L.; Zheng, M.-J.; Chen, H.; Wang, S.-Y.; Zhou, Q.-Q.; Zhang, Q.; Wang, P. J. Am. Chem. Soc. 2020, 142, 14201.
[33]
Lee, C. L.; Liu, H.; Wong, C. T. T.; Chow, H. Y.; Li, X.-C. J. Am. Chem. Soc. 2016, 138, 10477.
[34]
Burgess, R. R.; Deutscher, M. P. Guide to Protein Purification in Methods in Enzymology, Vol. 436, Academic Press, 2009.
[35]
Soria-Martinez, L.; Bauer, S.; Giesler, M.; Schelhaas, S.; Materlik, J.; Janus, K.; Pierzyna, P.; Becker, M.; Snyder, N. L.; Hartmann, L.; Schelhaas, M. J. Am. Chem. Soc. 2020, 142, 5252.
[36]
Ito, Y.; Gerz, M.; Nakahara, Y. Tetrahedron. Lett. 2000, 41, 103.
文章导航

/