生物质基催化剂在CO2化学转化中的应用
收稿日期: 2023-12-10
修回日期: 2024-03-22
网络出版日期: 2024-04-25
基金资助
福建省高校新世纪优秀人才支持计划; 华侨大学中青年教师科研提升资助计划(ZQN-YX103); 福建省自然科学基金(2021J01294)
Application of Biobased Catalysts in Chemical Conversion of CO2
Received date: 2023-12-10
Revised date: 2024-03-22
Online published: 2024-04-25
Supported by
Program for New Century Excellent Talents in University of Fujian Province; Promotion Program for Young and Middle-Aged Teacher in Science and Technology Research of Huaqiao University(ZQN-YX103); Natural Science Foundation of Fujian Province(2021J01294)
CO2是地球上储量最丰富的C1资源, 其特点是无毒、可再生、化学性质稳定和价廉易得. 因此, 通过化学转化方法将CO2转化为具有高附加值的化学品有着重要的意义. 由于CO2具有较高的热力学稳定性和动力学惰性, 导致基于它的大部分化学转化反应都需要使用高效催化剂. 迄今为止, 多孔碳、离子液体(ILs)、共价有机框架(COFs)、多孔有机聚合物(POPs)和金属有机框架(MOFs)等均已被用于CO2的化学转化, 这些催化体系虽然具有较高的催化活性, 但也存在诸多缺点, 如原料来源较为困难且这些原料大多不可再生, 制备过程不绿色或制备成本昂贵. 因此, 发展天然小分子或天然高分子为原料制备可再生生物质基催化剂显得尤为重要. 综述了含有天然产物的催化体系, 如氨基酸、胆碱、纤维素、壳聚糖和木质素等在以CO2制备高附加值化学品方面的研究进展.
高晋彬 , 陆颖琪 , 张辉 , 高利柱 , 熊兴泉 . 生物质基催化剂在CO2化学转化中的应用[J]. 有机化学, 2024 , 44(9) : 2732 -2741 . DOI: 10.6023/cjoc202312011
CO2 is the most abundant C1 platform compound on earth, characterized by non-toxicity, renewability, chemical stability, and availability. Therefore, it is of great significance to convert CO2 into high value-added chemicals through chemical conversion. Due to the high thermodynamic stability and kinetic inertness of CO2, most chemical conversion reactions require the use of high-efficiency catalysts. So far, various catalytic systems have been developed, such as porous carbon, ionic liquids (ILs), covalent organic frameworks (COFs), porous organic polymers (POPs), and metal organic frameworks (MOFs). Although these catalysts have high catalytic activity, they also have many drawbacks, namely, the source of raw materials is not wide, and most of these raw materials are not renewable, and the preparation process of these catalysts is not green. Therefore, it is particularly important to prepare renewable catalysts using small natural molecules or natural polymers as raw materials. The research progress of catalytic systems containing natural products, such as amino acids, choline derivatives, cellulose, chitosan, lignin, etc., is summarized in the preparation of high value-added chemicals from CO2.
Key words: biobased catalysts; CO2; chemical conversion; green synthesis
| [1] | Jones, W. D. J. Am. Chem. Soc. 2020, 142, 4955. |
| [2] | Artz, J.; Mueller, T. E.; Thenert, K.; Kleinekorte, J.; Meys, R.; Sternberg, A.; Bardow, A.; Leitner, W. Chem. Rev. 2018, 118, 434. |
| [3] | Ahn, Y.; Byun, J.; Kim, D.; Kim, B. S.; Lee, C. S.; Han, J. Green Chem. 2019, 21, 3442. |
| [4] | Samikannu, A.; Konwar, L. J.; M?ki-Arvel, P.; Mikkola, J. P. Appl. Catal., B 2019, 241, 41. |
| [5] | Zhou, C.; Li, M.; Yu, J. T.; Sun, S.; Cheng, J. Chin. J. Org. Chem. 2020, 40, 2221 (in Chinese). |
| [5] | (周聪, 李渺, 于金涛, 孙松, 成江, 有机化学, 2020, 40, 2221.) |
| [6] | Chen, K. H.; Li, H. R.; He, L. N. Chin. J. Org. Chem. 2020, 40, 2195 (in Chinese). |
| [6] | (陈凯宏, 李红茹, 何良年, 有机化学, 2020, 40, 2195.) |
| [7] | Zhang, M.; Xu, Y.; Williams, B. L.; Xiao, M.; Wang, S.; Han, D.; Sun, L.; Meng, Y. J. Clean. Prod. 2021, 279, 123344. |
| [8] | Yi, Y. P.; Hang, W.; Xi, C. J. Chin. J. Org. Chem. 2021, 41, 80 (in Chinese). |
| [8] | (易雅平, 杭炜, 席婵娟, 有机化学, 2021, 41, 80.) |
| [9] | Gulati, S.; Vijayan, S.; Kumar, M. S.; Harikumar, B.; Trivedi, M.; Varma, R. S. Coord. Chem. Rev. 2023, 474, 214853. |
| [10] | Jiang, M.; Zhu, M.; Wang, M.; He, Y.; Luo, X.; Wu, C.; Zhang, L.; Jin, Z. ACS Nano 2023, 17, 3209. |
| [11] | Pan, Y.; Zhang, H.; Zhang, B.; Gong, F.; Feng, J. Nat. Commun. 2023, 14, 1013. |
| [12] | Li, Y.; Li, L.; Yu, J. Chem 2017, 3, 928. |
| [13] | Silva, M. I.; Machado, í. R.; Toma, H. E.; Araki, K.; Angnes, L.; Gon?alves, J. M. J. Mater. Chem. A 2022, 10, 430. |
| [14] | Ning, H.; Guo, Z.; Wang, W.; Wang, X.; Yang, Z.; Ma, Z.; Wu, C.; Wu, M. Carbon Lett. 2022, 32, 807. |
| [15] | Xin, H.; Zhou, S.; Xu, S.; Zhai, W.; Liu, S.; Liu, S.; Wang, Z.; Lu, X.; Wei, S. J. Mater. Sci. 2022, 57, 6282. |
| [16] | Xu, Y.; Zhang, Y.; Hu, J.; Chen, C.; Yuan, Y.; Verpoort, F. Chin. J. Org. Chem. 2022, 42, 2542 (in Chinese). |
| [16] | (徐勇, 张永兴, 胡佳, 陈宬, 原晔, Francis, Verpoort, 有机化学, 2022, 42, 2542.) |
| [17] | Claver, C.; Yeamin, M. B.; Reguero, M.; Masdeu-Bultó, A. M. Green Chem. 2020, 22, 7665. |
| [18] | Guo, L.; Lamb, K. J.; North, M. Green Chem. 2021, 23, 77. |
| [19] | Hu, J.; Zhu, Z.; Xie, Z.; Le, Z. Chin. J. Org. Chem. 2022, 42, 978 (in Chinese). |
| [19] | (胡家榆, 祝志强, 谢宗波, 乐长高, 有机化学, 2022, 42, 978.) |
| [20] | Mumford, K. A.; Wu, Y.; Smith, K. H.; Stevens, G. W. Front. Chem. Sci. Eng. 2015, 9, 125. |
| [21] | Tharun, J.; Mathai, G.; Roshan, R.; Kathalikkattil, A. C.; Bomia, K.; Park, D. W. Phys. Chem. Chem. Phys. 2013, 15, 9029. |
| [22] | Roshan, K. R.; Jose, T.; Kim, D.; Cheriana, K. A.; Park, D. W. Catal. Sci. Technol. 2014, 4, 963. |
| [23] | Yue, S.; Hao, X. J.; Wang, P. P.; Li, J. Mol. Catal. 2017, 433, 420. |
| [24] | Qu, Y.; Lan, J.; Chen, Y.; Sun, J. Sustainable Energy Fuels 2021, 5, 2494. |
| [25] | Qu, Y.; Chen, Y.; Sun, J. J. CO2 Util. 2022, 56, 101840. |
| [26] | Saptal, V. B.; Bhanage, B. M. ChemSusChem 2017, 10, 1145. |
| [27] | Shahrom, M. S. R.; Wilfred, C. D.; Taha, A. K. Z. J. Mol. Liq. 2016, 219, 306. |
| [28] | Benworth, B.; Hansen, S. S.; Chen, B.; Poe, D.; Derrick, Poe, Zhang, Y.; Klein, J.; Horton, M. A.; Adhikari, L.; Zelovich, T.; Doherty, B. W.; Gurkan, B.; Maginn, E. J.; Ragauskas, A.; Dadmun, M.; Zawodzinski, T. A.; Baker, G. A.; Tuckerman, M. E.; Savinell, R. F.; Sangoro, J. R. Chem. Rev. 2021, 121, 1232. |
| [29] | Xiong, X. Q.; Han, Q.; Shi, L.; Xiao, S. Y.; Bi, C. Chin. J. Org. Chem. 2016, 36, 480 (in Chinese). |
| [29] | (熊兴泉, 韩骞, 石霖, 肖上运, 毕成, 有机化学, 2016, 36, 480.) |
| [30] | Zhang, M.; Zhang, Z.; Gul, Z.; Tian, M.; Wang, J.; Zheng, K.; Zhao, C.; Li, C. J. Sep. Sci. 2023, 46, 2300098. |
| [31] | Zhang, J.; Li, S.; Yao, L.; Yi, Y.; Shen, L.; Li, Z.; Qiu, H. Chin. Chem. Lett. 2023, 34, 107750. |
| [32] | Ali, E.; Hadj-Kali, M. K.; Mulyono, S.; Alnashef, I. Int. J. Greenhouse Gas Control 2016, 47, 342. |
| [33] | Lü, H.; Wu, K.; Zhao, Y.; Hao, L.; Liao, W.; Deng, C.; Ren, W. J. CO2 Util. 2017, 22, 400. |
| [34] | Vagnoni, M.; Samori, C.; Galletti, P. J. CO2 Util. 2020, 42, 101302. |
| [35] | Yang, X.; Zou, Q.; Zhao, T.; Chen, P.; Liu, Z.; Liu, F.; Lin, Q. ACS Sustainable Chem. Eng. 2021, 9, 10437. |
| [36] | Wang, S.; Zhu, Z.; Hao, D.; Su, T.; Len, C.; Ren, W.; Lü, H. J. CO2 Util. 2020, 40, 101250. |
| [37] | He, L.; Zhang, W.; Yang, Y.; Ma, J.; Liu, F.; Liu, M. J. CO2 Util. 2021, 54, 101750. |
| [38] | Yang, X.; Liu, Z.; Chen, P.; Liu, F.; Zhao, T. J. CO2 Util. 2022, 58, 101936. |
| [39] | Wang, Z.; Yan, T.; Guo, L.; Wang, Q.; Zhang, R.; Zhan, H.; Yi, L.; Chen, J.; Wu, X. ChemistrySelect 2022, 7, 202202091. |
| [40] | Guo, L.; Zhang, R.; Xiong, Y.; Chang, D.; Zhao, H.; Zhang, W.; Zheng, W.; Chen, J.; Wu, X. Molecules 2020, 25, 3627. |
| [41] | Ma, X.; Zou, B.; Cao, M.; Chen, S.; Hu, C. J. Mater. Chem. A 2014, 2, 18360. |
| [42] | Samikannu, A.; Konwar, L. J.; M?ki-Arvel, P.; Mikkola, J. Appl. Catal. Environ. 2019, 241, 41. |
| [43] | Hao, X.; An, X.; Patil, A. M.; Wang, P.; Ma, X.; Du, X.; Hao, X.; Abudula, A.; Guan, G. ACS Appl. Mater. Interfaces 2021, 13, 3738. |
| [44] | Qiu, L. Q.; Li, H. R.; He, L. N. Acc. Chem. Res. 2023, 56, 2225. |
| [45] | Xie, W. H.; Yao, X.; Li, H.; Li, H. R.; He, L. N. ChemSusChem 2022, 15, 202201004. |
| [46] | Kong, W.; Liu, J. RSC Adv. 2019, 9, 4925. |
| [47] | Shao, X.; Zhang, Y.; Miao, X.; Wang, W.; Liu, Z.; Liu, Q.; Zhang, T.; Ji, J.; Ji, X. Sustainable Energy Fuels 2021, 5, 4701. |
| [48] | Appaturi, J. N.; Adam, F. Appl. Catal. Environ. 2013, 136, 150. |
| [49] | Yang, J.; Liu, D.; Song, X.; Zhao, Y.; Wang, Y.; Rao, L.; Fu, L.; Wang, Z.; Yang, X.; Li, Y.; Liu, Y. Gels 2022, 8, 270. |
| [50] | Roshan, K. R.; Mathai, G.; Kim, J.; Tharun, J.; Park, G.; Park, D. W. Green Chem. 2012, 14, 2933. |
| [51] | Roshan, K. R.; Jose, T.; Kathalikkattil, A. C.; Kim, D. W.; Kim, B.; Park, D. W. Appl. Catal., A 2013, 467, 17. |
| [52] | Daniela, M.; Rodrigues, L. G.; Hunter, F. L.; Bernard, M. F.; Rojas, F.; Vecchia, D.; Einloft, S. Catal. Lett. 2019, 149, 733. |
| [53] | Li, X.; He, J.; Zhang, Y. J. Org. Chem. 2018, 83, 11019. |
| [54] | Song, S.; Zhang, J.; G?zayd?n, G.; Yan, N. Angew. Chem. Int., Ed. 2019, 58, 4934. |
| [55] | Guo, L.; Dou, R.; Wu, Y.; Zhang, R.; Wang, L.; Wang, Y.; Gong, Z.; Chen, J.; Wu, X. ACS Sustainable Chem. Eng. 2019, 7, 16585. |
| [56] | Xiong, X.; Zhang, H.; Lai, S. L.; Gao, J. B.; Gao, L. Z. React. Funct. Polym. 2020, 149, 104502. |
| [57] | Lai, S.; Gao, J.; Zhang, H.; Cheng, L.; Xiong, X. Q. J. CO2 Util. 2020, 38, 148. |
| [58] | Jaroonwatana, W.; Theerathanagorn, T.; Theerasilp, M.; Gobbo, S. Del.; Yiamsawas, D.; D'Elia, V.; Crespy, D. Sustainable Energy Fuels 2021, 5, 5431. |
| [59] | Xiao, L. F.; Li, F. W.; Xia, C. G. Appl. Catal., A 2005, 279, 125. |
| [60] | Sun, J.; Wang, J. Q.; Cheng, W. G.; Zhang, J. X.; Li, X. H.; Zhang, S. J.; She, Y. B. Green Chem. 2012, 14, 654. |
| [61] | Chen, J. X.; Jin, B.; Dai, W. L.; Deng, S. L.; Cao, L. R.; Cao, Z. J.; Luo, S. L.; Luo, X. B.; Tu, X. M.; Au, C. T. Appl. Catal., A 2014, 484, 26. |
| [62] | Taheri, M.; Ghiaci, M.; Shchukarev, A. New J. Chem. 2018, 42, 587. |
| [63] | Besse, V.; Illy, N.; David, G.; Caillol, S.; Boutevin, B. ChemSusChem 2016, 9, 2167. |
| [64] | Wu, Y.; Zuo, S.; Zhao, Y.; Wang, H.; Li, D.; Guo, S.; Zhao, Z.; Zhang, J.; Han, B.; Liu, Z. Green Chem. 2020, 22, 2846. |
| [65] | Paliwal, K. S.; Biswas, T.; Mitra, A.; Tudu, G.; Mahalingam, V. Asian J. Org. Chem. 2022, 11, 175. |
| [66] | Hsan, N.; Dutta, P. K.; Kumar, S.; Das, N.; Koh, J. J. CO2 Util. 2020, 41, 101237. |
| [67] | Getahun, M. B.; Santiko, E, B.; Imae, T.; Chiang, C. L.; Lin, Y. G. Appl. Surf. Sci. 2022, 604, 154515. |
| [68] | Kim, H. M.; Oh, K.; Kyung, D.; Ahn, H.; Yoon, I.; Kwak, S.; Nah, I. W. Can. J. Chem. Eng. 2022, 100, 1755. |
| [69] | Tan, L. X.; Tan, B. Chem. Soc. Rev. 2017, 46, 3322. |
| [70] | Xie, C.; Song, J.; Wu, H.; Hu, Y.; Liu, H.; Yang, Y.; Zhang, Z.; Chen, B.; Han, B. Green Chem. 2018, 20, 4655. |
| [71] | Lai, S.; Gao, J.; Xiong, X. React. Funct. Polym. 2021, 165, 104976. |
| [72] | Yue, Z.; Hu, T.; Su, H.; Zhao, W.; Li, Y.; Zhao, H.; Liu, Y.; Liu, Y.; Zhang, H.; Jiang, L.; Tang, X.; Shan, S.; Zhi, Y. Fuel 2022, 326, 125007. |
| [73] | Das, S.; Zhang, J.; Chamberlain, T. W.; Clarkson, G. J.; Walton, R. I. Inorg. Chem. 2022, 61, 18536. |
| [74] | Gong, S.; Xiao, X.; Wang, W.; Sam, D.; Lu, R.; Xu, Y.; Liu, J.; Wu, C.; Lv, X. J. Colloid Interfacce Sci. 2021, 600, 412. |
/
| 〈 |
|
〉 |