研究论文

一锅法自偶联反应合成3,5-二苯基-1,2,4-噁二唑

  • 刘蒙金 ,
  • 肖燕 ,
  • 周锴 ,
  • 李子成 ,
  • 黄文才
展开
  • 四川大学化学工程学院 成都 610065

收稿日期: 2024-01-24

  修回日期: 2024-03-24

  网络出版日期: 2024-04-25

Synthesis of 3,5-Diaryl-1,2,4-oxadiazole by One-Pot Homocoupling Reaction

  • Mengjin Liu ,
  • Yan Xiao ,
  • Kai Zhou ,
  • Zicheng Li ,
  • Wencai Huang
Expand
  • School of Chemical Engineering, Sichuan University, Chengdu 610065

Received date: 2024-01-24

  Revised date: 2024-03-24

  Online published: 2024-04-25

摘要

开发了一种合成1,2,4-噁二唑的新方法. 在Cs2CO3存在下, 以苯甲醛肟和N-氯代丁二酰亚胺(NCS)为原料, 采用一锅法自偶联反应合成了3,5-二苯基-1,2,4-噁二唑. 该方法适用于无活性取代基的噻吩-3-甲醛、异烟醛和苯甲醛, 产率为19%~78%; 但该方法不适用于脂肪族醛、其他杂芳香族醛和带有活性基团(羟基、氨基和羧酸)的苯醛. 相比于其他方法, 此方法底物单一, 仅为芳香醛肟, 过程简单, 符合绿色化学理念, 是合成3,5-(同取代基)-1,2,4-噁二唑的便捷方法.

本文引用格式

刘蒙金 , 肖燕 , 周锴 , 李子成 , 黄文才 . 一锅法自偶联反应合成3,5-二苯基-1,2,4-噁二唑[J]. 有机化学, 2024 , 44(7) : 2251 -2256 . DOI: 10.6023/cjoc202401030

Abstract

3,5-Diaryl-1,2,4-oxadiazoles were synthesized by homocoupling of chloroarylaldoxime from arylaldoxime and N-chlorosuccinimide (NCS) in the presence of Cs2CO3 in one pot. The method is suitable for thiophene-3-carbaldehyde, isonicotinaldehyde and arylaldehyde without active substituent with a yield from 19% to 78%. However, it was not suitable for aliphatic aldehydes, other heteroaromatic aldehydes and benzaldehydes carrying active groups (hydroxyl, amino and carboxylic acid). Compared to reported methods, this method uses only aromatic aldoxime as a single substrate. The process is simple, convenient, and green, making it a reliable way to synthesize 3,5-(homo-substituted)-1,2,4-oxadiazoles.

参考文献

[1]
Liu, X.; Liu, M.; Wu, W.; Zeng, M.-T.; Zhu, H.; Zhu, C.-C.; Dong, Z.-B. Green Chem. 2017, 19, 5591.
[2]
Liu, X.; Zhang, S.-B.; Dong, Z.-B. Eur. J. Org. Chem. 2018, 39, 5406.
[3]
Liu, X.; Zhang, S.-B.; Zhu, H.; Dong, Z.-B. J. Org. Chem. 2018, 83, 11703.
[4]
Bostr?m, J.; Hogner, A.; Llinàs, A.; Wellner, E.; Plowright, A. T. J. Med. Chem. 2012, 55, 1817.
[5]
Villemagne, B.; Machelart, A.; Tran, N. C.; Flipo, M.; Moune, M.; Leroux, F.; Piveteau, C.; Wohlk?nig, A.; Wintjens, R.; Li, X.; Gref, R.; Brodin, P.; Deprez, B.; Baulard, A. R.; Willand, N. ACS Infect. Dis. 2020, 6, 366.
[6]
Kala, P.; Khasim Sharif, S.; Murali Krishna, C.; Ramachandran, D. Med. Chem. Res. 2020, 29, 136.
[7]
Dawbaa, S.; Nuha, D.; Evren, A. E.; Cankili?, M. Y.; Yurtta?, L.; Turan, G. J. Mol. Struct. 2023, 1282, 135213.
[8]
Janardhanan, J.; Chang, M.; Mobashery, S. Opin. Microbiol. 2016, 33, 13.
[9]
Sun, Q.; Shen, C.; Li, X.; Lin, Q.; Lu, M. J. Mater. Chem. 2017, 5, 11063.
[10]
Wu, T.-Y.; Chang, J.-C.; Lin, Y.-C.; Chiang, J.-E.; Yeh, C.-H.; Lee, L.-T.; Kuo, C.-W.; Lee, P.-Y. Dyes Pigm. 2023, 213, 111157.
[11]
Pace, A.; Buscemi, S.; Piccionello, A. P.; Pibiri, I. Adv. Heterocycl. Chem. 2015, 116, 85.
[12]
Qurban, J.; Elsherbini, M.; Alharbi, H.; Wirth, T. Chem. Commun. 2019, 55, 7998.
[13]
Caramella, P.; Corsaroza, A.; Marinone, F. Tetrahedron Lett. 1983, 24, 4377.
[14]
Tian, C.; Feng, H.; Qiu, Y.; Zhang, G.; Tan, T.; Zhang, L. Polym. Chem. 2022, 13, 5368.
[15]
Atmaram, U. A.; Roopan, S. M. Microbiol. Biotechnol. 2022, 106, 3489.
[16]
Mei, Y. C.; Yang, B.W.; Tang, H. L. CN 112979573, 2019.
[17]
Kaboudin, B.; Saadati, F. J. Heterocycl. Chem. 2005, 42, 699.
[18]
Spink, E.; Ding, D.; Peng, Z.; Boudreau, M. A.; Leemans, E.; Lastochkin, E.; Song, W.; Lichtenwalter, K.; O'Daniel, P. I.; Testero, S. A.; Pi, H.; Schroeder, V. A.; Wolter, W. R.; Antunes, N. T.; Suckow, M. A.; Vakulenko, S.; Chang, M.; Mobashery, S. J. Med. Chem. 2015, 58, 1380.
[19]
Ramu, T.; Prasanthi, S.; Mangarao, N.; Basha, G. M.; Srinuvasarao, R.; Siddaiah, V. Chem. Lett. 2013, 42, 722.
[20]
Kaboudin, B.; Malekzadeh, L. Tetrahedron Lett. 2011, 52, 6424.
[21]
Baykov, S.; Sharonova, T.; Osipyan, A.; Rozhkov, S.; Shetnev, A.; Smirnov, A. Tetrahedron Lett. 2016, 57, 2898.
[22]
Stepanov, A. I.; Dashko, D. V.; Stepanova, E. Chem. Heterocycl. Compd. 2019, 55, 1233.
[23]
Nong, G.-M.; Lv, S.-N.; Shi, W.-M.; Liang, C.; Su, G.-F.; Mo, D.-L. Org. Lett. 2023, 25, 267.
[24]
Kuram, M. R.; Kim, W. G.; Myung, K.; Hong, S. Y. J. Org. Chem. 2016, 3, 438.
[25]
Li, E.; Wang, M.; Wang, Z.; Yu, W.; Chang, J. Tetrahedron Lett. 2018, 74, 4613.
[26]
Outirite, M.; Lagrenée, M.; Hammouti, B.; Bentiss, F. Res. Chem. Intermed. 2015, 41, 1601.
[27]
Mirza, B. J. Org. Chem. 2015, 39, 373.
[28]
Kelly, D. R.; Baker, S. C.; King, D. S.; Silva, D. S.; Lord, G.; Taylor, J. P. Org. Biomol. Chem. 2008, 6,787.
[29]
Baikov, S. V.; Stashina, G. A.; Chernoburova, E. I. Russ. Chem. Bull. 2019, 68, 347.
[30]
Outirite, M.; Lebrini, M.; Lagrenee, M.; Bentiss, F. J. Heterocycl. Chem. 2007, 44, 1529.
[31]
Rostamizadeh, S.; Ghaieni, H. R.; Aryan, R.; Amani, A-M Synth. Commun. 2010, 40, 3084.
[32]
Li, Q.; Cui, L.; Zhong, C.; Jiang, Z.-Q.; Liao, L.-S. Org. Lett. 2014, 16, 1622.
[33]
Leite, L. F. C.; Srivastava, R. M.; Alexandre, P. C. Bull. Soc. Chim. Belg. 1989, 98, 203.
文章导航

/