研究论文

氮杂邻亚甲基苯醌的P-迈克尔加成/SN2/分子内Wittig反应的一锅法串联反应构建2,3-二取代二氢喹啉衍生物

  • 刘雨迪 ,
  • 程行 ,
  • 何照林 ,
  • 陈伟
展开
  • 武汉工程大学化学与环境工程学院 新型反应器与绿色化学工艺湖北省重点实验室 武汉 430205
† 共同第一作者.

收稿日期: 2024-02-02

  修回日期: 2024-03-13

  网络出版日期: 2024-04-25

基金资助

国家自然科学基金(21702155)

One Pot Tandem P-Michael Addition/SN2/Intramolecular Wittig Reaction of aza-o-Quinone Methides: Construction of 2,3-Disubstituted Dihydroquinoline Derivatives

  • Yudi Liu ,
  • Hang Cheng ,
  • Zhaolin He ,
  • Wei Chen
Expand
  • Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205
† These authors contributed equally to this work.

Received date: 2024-02-02

  Revised date: 2024-03-13

  Online published: 2024-04-25

Supported by

National Natural Science Foundation of China(21702155)

摘要

报道了原位生成的氮杂邻亚甲基苯醌中间体与三苯基膦、α-溴代酮发生P-迈克尔加成/SN2/分子内Wittig反应的一锅法串联反应. 该反应以25%~93%的收率提供了一种高效、温和的构建2,3-二氢喹啉衍生物的方法. 此外, 还可以通过反应条件的简单改变, 得到的2,3-二取代的喹啉衍生物.

本文引用格式

刘雨迪 , 程行 , 何照林 , 陈伟 . 氮杂邻亚甲基苯醌的P-迈克尔加成/SN2/分子内Wittig反应的一锅法串联反应构建2,3-二取代二氢喹啉衍生物[J]. 有机化学, 2024 , 44(7) : 2241 -2250 . DOI: 10.6023/cjoc202402002

Abstract

A one-pot tandem P-Michael addition/SN2/intramolecular Wittig Reaction of in situ generated aza-o-quinone methides with PPh3 and α-bromo ketones has been reported. This protocol provided an efficient and mild approach to synthesize 2,3-disubstituted dihydroquinolines in 25%~93% yields. In addition, the 2,3-disubstituted quinolines could also be obtained by simply modification of the reaction conditions.

参考文献

[1]
Takahashi, H.; Bekkali, Y.; Capolino, A. J.; Gilmore, T.; Goldrick, S. E.; Kaplita, P. V.; Liu, L.; Nelson, R. M.; Terenzio, D.; Wang, J.; Zuvela-Jelaska, L.; Proudfoot, J.; Nabozny, G.; Thomson, D. Bioorg. Med. Chem. Lett. 2007, 17, 5091.
[2]
(a) Moreau, R.; Elkrief, L.; Bureau, C.; Perarnau, J. M.; Thevenot, T.; Saliba, F.; Louvet, A.; Nahon, P.; Lannes, A.; Anty, R.; Hillaire, S.; Pasquet, B.; Ozenne, V.; Rudler, M.; Ollivier-Hourmand, I.; Robic, M. A.; d'Alteroche, L.; Di Martino, V.; Ripault, M. P.; Pauwels, A.; Grange, J. D.; Carbonell, N.; Bronowicki, J. P.; Payance, A.; Rautou, P. E.; Valla, D.; Gault, N.; Lebrec, D.; Investigators, N. T. Gastroenterology 2018, 155, 1816.
[2]
(b) Martin-Acosta, P.; Cuadrado, I.; Gonzalez-Cofrade, L.; Pestano, R.; Hortelano, S.; de Las Heras, B.; Estevez-Braun, A. J. Nat. Prod. 2023, 86, 317.
[2]
(c) Davies, S. G.; Fletcher, A. M.; Houlsby, I. T. T.; Roberts, P. M.; Thomson, J. E. J. Org. Chem. 2017, 82, 10673.
[2]
(d) Reid, C. S.; Patrick, D. A.; He, S.; Fotie, J.; Premalatha, K.; Tidwell, R. R.; Wang, M. Z.; Liu, Q.; Gershkovich, P.; Wasan, K. M.; Wenzler, T.; Brun, R.; Werbovetz, K. A. Bioorg. Med. Chem. 2011, 19, 513.
[2]
(e) Wang, T.; Chen, X.; Li, P. Eur. J. Org. Chem. 2022, 2022, e202200767.
[3]
Liao, H.-H.; Minoza, S.; Lee, S.-C.; Rueping, M. Chem. Eur. J. 2022, 28, e202201112.
[4]
Yang, B.; Gao, S. Chem. Soc. Rev. 2018, 47, 7926.
[5]
Steinhagen, H.; Corey, E. J. Angew. Chem., Int. Ed. 1999, 38, 1928.
[6]
(a) Yang, Q.-Q.; Wang, Q.; An, J.; Chen, J.-R.; Lu, L.-Q.; Xiao, W. J. Chem. Eur. J. 2013, 19, 8401.
[6]
(b) Huang, H.; Yang, Y.; Zhang, X.; Zeng, W.; Liang, Y. Tetrahedron Lett. 2013, 54, 6049.
[6]
(c) Gui, H.-Z.; Wu, X.-Y.; Wei, Y.; Shi, M. Adv. Synth. Catal. 2019, 361, 5466.
[6]
(d) Jong, J. A. W.; Bao, X.; Wang, Q.; Zhu, J. Helv. Chim. Acta 2019, 102, e1900002.
[6]
(e) Yang, Q.-Q.; Xiao, C.; Lu, L. Q.; An, J.; Tan, F.; Li, B.-J.; Xiao, W.-J. Angew. Chem., Int. Ed. 2012, 51, 9137.
[6]
(f) Zhang, X.; Pan, Y.; Liang, P.; Ma, X.; Jiao, W.; Shao, H. Adv. Synth. Catal. 2019, 361, 5552.
[6]
(g) Liang, J.; Liu, Y.; Wang, A.; Wu, Y.; Ma, X.; Li. H. Chin. J. Org. Chem. 2023, 43, 3888. (in Chinese)
[6]
(梁俊秀, 刘亚洲, 王阿木, 吴彦超, 马小锋, 李惠静, 有机化学, 2023, 43, 3888.)
[7]
(a) Lee, A.; Zhu, J. L.; Feoktistova, T.; Brueckner, A. C.; Cheong, P. H.; Scheidt, K. A. Angew. Chem., Int. Ed. 2019, 58, 5941.
[7]
(b) Lei, L.; Yao, Y.-Y.; Jiang, L.-J.; Lu, X.; Liang, C.; Mo, D.-L. J. Org. Chem. 2020, 85, 3059.
[7]
(c) Liang, D.; Rao, L.; Xiao, C.; Chen, J.-R. Org. Lett. 2019, 21(21), 8783.
[7]
(d) Wang, H.-Q.; Ma, W.; Sun, A.; Sun, X.-Y.; Jiang, C.; Zhang, Y.-C.; Shi, F. Org. Biomol. Chem. 2021, 19, 1334.
[7]
(e) Lu, D.-L.; Yao, Y.-Y.; Liang, Y.-F.; Liang, C.; Lei, L.; Ma, L.; Mo, D.-L. J. Org. Chem. 2023, 88, 690.
[7]
(f) Liu, C.-Y.; Zhao, J.; Pan, C.-X.; Mo, D.-L.; Ma, X.-P.; Huang, W.-Y. Org. Lett. 2024, 26, 519.
[7]
(g) Han, S.-J.; Vogt, F.; May, J. A.; Krishnan, S.; Gatti, M.; Virgil, S. C.; Stoltz, B. M. J. Org. Chem. 2015, 80, 528.
[7]
(h) Jiang, S.-P.; Lu, W.-Q.; Liu, Z.; Wang, G.-W. J. Org. Chem. 2018, 83, 1959.
[7]
(i) Zheng, Y.; Tu, L.; Li, N.; Huang, R.; Feng, T.; Sun, H.; Li, Z.; Liu, J. Adv. Synth. Catal. 2018, 361, 44.
[7]
(j) Wu, S.; Liu, C.; Luo, G.; Jin, Z.; Zheng, P.; Chi, Y. R. Angew. Chem., Int. Ed. 2019, 58, 18410.
[8]
(a) Jin, Q.; Zhang, D.; Zhang, J. Org. Biomol. Chem. 2019, 17, 9708.
[8]
(b) Chen, L.; Yang, G. M.; Wang, J.; Jia, Q. F.; Wei, J.; Du, Z. Y. RSC Adv. 2015, 5, 76696.
[8]
(c) Guo, Z.; Jia, H.; Liu, H.; Wang, Q.; Huang, J.; Guo, H. Org. Lett. 2018, 20, 2939.
[8]
(d) Wang, J.; Qi, T.; He, S.; Huang, W.; Peng, C.; Zhan, G.; Han, B. ACS Catal. 2023, 13, 10694.
[8]
(e) Wang, L.; Li, S.; Blumel, M.; Philipps, A. R.; Wang, A.; Puttreddy, R.; Rissanen, K.; Enders, D. Angew. Chem., Int. Ed. 2016, 55, 11110.
[8]
(f) Long, W.; Chen, S.; Zhang, X.; Fang, L.; Wang, Z. Tetrahedron 2018, 74, 6155.
[8]
(g) Zhang, X.; Pan, Y.; Liang, P.; Pang, L.; Ma, X.; Jiao, W.; Shao, H. Adv. Synth. Catal. 2018, 360, 3015.
[8]
(h) Zheng, Y.-S.; Tu, L.; Gao, L.-M.; Huang, R.; Feng, T.; Sun, H.; Wang, W.-X.; Li, Z.-H.; Liu, J.-K. Org. Biomol. Chem. 2018, 16, 2639.
[8]
(i) Meng, Z.; Yang, W.; Zheng, J. Tetrahedron Lett. 2019, 60, 1758.
[8]
(j) Wang, K.-K.; Ye, J.-W.; Jia, J.; Li, Y.-F.; Yao, W.-W.; Li, L.-X.; Zhao, S.-M.; Xu, Y.; Chen, R. Tetrahedron 2024, 150, 133772.
[9]
(a) Chatupheeraphat, A.; Liao, H-H.; Mader, S.; Sako, M.; Sasai, H.; Atodiresei, I.; Rueping, M. Angew. Chem., Int. Ed. 2016, 55, 4803.
[9]
(b) Kretzschmar, M.; Hofmann, F.; Moock, D.; Schneider, C. Angew. Chem., Int. Ed. 2018, 57, 4774.
[9]
(c) Liao, H.-H.; Chatupheeraphat, A.; Hsiao, C.-C.; Atodiresei, I.; Rueping, M. Angew. Chem., Int. Ed. 2015, 54, 15540.
[9]
(d) Yang, F.; Zhou, X.; Wei, Y.; Wang, L.; Jiang, J. Org. Chem. Front. 2021, 8, 5064.
[10]
Hua, T.-B.; Chao, F.; Wang, L.; Yan, C.-Y.; Xiao, C.; Yang, Q.-Q.; Xiao, W.-J. Adv. Synth. Catal. 2020, 362, 2615.
[11]
He, Z.-L.; Wang, G.; Cheng, H.; Yan, D.-C. Synlett 2022, 33, 795.
[12]
Li, J.; Zhang, P.; Jiang, M.; Yang, H.; Zhao, Y.; Fu, H. Org. Lett. 2017, 19, 1994.
[13]
Zhang, L.; Panteleev, J.; Lautens, M. J. Org. Chem. 2014, 79, 12159.
[14]
Wang, Z.-H.; Zhang, T.; Yan, Q.-F.; Zhao, J.-Q.; You, Y.; Zhang, Y.-P.; Yin, J.-Q.; Yuan, W.-C. Org. Chem. Front. 2023, 10, 4256.
[15]
Zhang, Y.; Sim, J. H.; MacMillan, S. N.; Lambert, T. H. Org. Lett. 2020, 22, 6026.
文章导航

/